Oracle® Database Advanced Security Guide

Oracle Database Advanced Security Guide, 23ai

F46692-06

Copyright © 1996, 2024, Oracle and/or its affiliates.

Primary Author: Patricia Huey

Contributors: Sudha Duraiswamy, Michael Hwa, Sudha Iyer, Supriya Kalyanasundaram, Lakshmi Kethana, Peter Knaggs, Andrew Koyfman, Dah-Yoh Lim, Adam Lee, Yunrui Li, Adam Lindsey, Rahil Mir, Gopal Mulagund, Andy Philips, Preetam Ramakrishna, Philip Thornton, Peter Wahl, Lixia Yuan, Paul Youn

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed, or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

	Preface	
	Audience	xix
	Documentation Accessibility	xix
	Diversity and Inclusion	xix
	Related Documents	XX
	Conventions	XX
	Changes in This Release for Oracle Database Advanced Security	y Guide
	Changes in Oracle Database Advanced Security 23ai	xxi
	Updates to Oracle Database Advanced Security 23ai	xxiii
1	Introduction to Oracle Advanced Security	
	1.1 Transparent Data Encryption	1-1
	1.2 Oracle Data Redaction	1-1
⊃ar	t Using Transparent Data Encryption	
2	Introduction to Transparent Data Encryption	
	2.1 What Is Transparent Data Encryption?	2-1
	2.2 How Configuring Transparent Data Encryption Works	2-2
	2.3 Benefits of Using Transparent Data Encryption	2-3
	2.4 Who Can Configure Transparent Data Encryption?	2-4
	2.5 Types and Components of Transparent Data Encryption	2-5
	2.5.1 About Transparent Data Encryption Types and Components	2-5
	2.5.2 How Transparent Data Encryption Tablespace Encryption Works	2-5
	2.5.3 How Transparent Data Encryption Column Encryption Works	2-7
	2.5.4 How the Keystore for the Storage of TDE Master Encryption Keys Works	2-8
	2.5.4.1 About the Keystore Storage of TDE Master Encryption Keys	2-8

2.5.4.2 Benefits of the Keystore Storage Framework

2-8

	5.4.3 Types of Keystores	2-9
2.5.5	Supported Encryption and Integrity Algorithms	2-10
2.6 Trar	sparent Data Encryption in a Multitenant Environment	2-11
2.7 Trar	sparent Data Encryption Keystore Search Order	2-12
Configu	ring United Mode	
3.1 Abo	ut Configuring United Mode	3-1
3.2 Ope	rations That Are Allowed in United Mode	3-2
3.3 Con	figuring the Keystore Location and Type for United Mode	3-6
3.3.1	About Configuring the Keystore Location and Type for United Mode	3-7
3.3.2	Configuring United Mode with the Initialization Parameter File and ALTER SYSTEM	3-7
3.3.3	Example: Configuring a TDE Wallet When Multiple Databases Share the Same Host	3-9
3.3.4	Example: Configuring a TDE Wallet for an Oracle Automatic Storage Management Disk Group	3-9
3.4 Con	figuring a TDE Wallet and TDE Master Encryption Key for United Mode	3-9
3.4.1	About Configuring a TDE Wallet and TDE Master Encryption Key for United Mode	3-10
3.4.2	Step 1: Create the TDE Wallet	3-11
3.	4.2.1 About Creating TDE Wallets	3-11
3.	1.2.2 Creating a Password-Protected TDE Wallet	3-11
3.	4.2.3 Creating an Auto-Login or a Local Auto-Login TDE Wallet	3-12
3.4.3	Step 2: Open the TDE Wallet	3-13
3.	4.3.1 About Opening TDE Wallets	3-13
3.	4.3.2 Opening the TDE Wallet in a United Mode PDB	3-14
3.4.4	Step 3: Set the TDE Master Encryption Key in the TDE Wallet	3-15
3.	4.4.1 About Setting the TDE Wallet TDE Master Encryption Key	3-16
3.	4.4.2 Setting the TDE Master Encryption Key in the United Mode TDE Wallet	3-16
3.4.5	Step 4: Encrypt Your Data in United Mode	3-17
3.5 Ope	rations That Are Not Allowed in a United Mode PDB	3-18
3.6 Con	figuring a Container Database with United Mode PDBs for Oracle Key Vault	3-18
3.6.1	About Configuring a Container Database with United Mode PDBs for Oracle Key Vault	3-19
3.6.2	About Configuring a Container Database with United Mode PDBs for Oracle Key Vault	3-19
3.6.3	Step 1: Configure Oracle Key Vault for United Mode	3-20
3.6.4	Step 2: Open the Connection to Oracle Key Vault	3-20
3.	6.4.1 About Opening the Connection to Oracle Key Vault	3-20
3.	6.4.2 Opening the Oracle Key Vault Connection in a United Mode PDB	3-21
3.6.5	Step 3: Set the TDE Master Encryption Key in Oracle Key Vault	3-22
3.	6.5.1 About Setting the External Keystore TDE Master Encryption Key	3-22

	3.0	5.5.2 Heartbeat Batch Size for External Keystores	3-23
	3.0	5.5.3 Setting the TDE Master Encryption Key for United Mode PDBs in an External Keystore	3-24
	3.0	6.5.4 Migration of an Encrypted Database from a TDE Wallet to Oracle Key Vault or OCI KMS	3-26
	3.6.6	Step 4: Encrypt Your Data in United Mode	3-26
4	Configu	ring Isolated Mode	
	4.1 Abo	ut Configuring Isolated Mode	4-1
	4.2 Ope	rations That Are Allowed in Isolated Mode	4-2
	4.3 Ope	rations That Are Not Allowed in an Isolated Mode PDB	4-7
	4.4 Con	figuring the Keystore Location and Type for Isolated Mode	4-7
	4.4.1	About Configuring the Keystore Location and Type for Isolated Mode	4-7
	4.4.2	Configuring the Keystore Location and Keystore Type for an Isolated Mode	
		PDB	4-8
	4.4.3	Example: Restoring an Older Version of a Control File	4-9
	4.4.4	Example: Addressing the Problem of a Lost Control File	4-10
	4.4.5	Example: Configuring Isolated Mode in an Oracle Real Application Clusters Environment	4-11
	4.5 Con	figuring a TDE Wallet and TDE Master Encryption Key in Isolated Mode	4-11
	4.5.1	About Configuring a TDE Wallet in Isolated Mode	4-12
	4.5.2	Step 1: Create a TDE Wallet in a PDB Configured in Isolated Mode	4-12
	4.5.3	Step 2: Open the TDE Wallet in an Isolated Mode PDB	4-13
	4.5.4	Step 3: Set the TDE Master Encryption Key in the TDE Wallet of the Isolated Mode PDB	4-14
	4.5.5	Step 4: Encrypt Your Data in Isolated Mode	4-15
	4.6 Con	figuring a Container Database with Isolated Mode PDBs for Oracle Key Vault	4-15
	4.6.1	About Configuring an External Keystore in Isolated Mode	4-15
	4.6.2	Step 1: Configure Isolated PDBs for Oracle Key Vault	4-16
	4.6.3	Step 2: Open the Isolated Mode PDB External Keystore	4-16
	4.6.4	Step 3: Set the First TDE Master Encryption Key in the External Keystore	4-17
	4.0	5.4.1 Setting the TDE Master Encryption Key in the Isolated Mode External Keystore	4-17
	4	6.4.2 Migration of a Previously Configured Encryption Key in Isolated Mode	4-18
	4.6.5	Step 4: Encrypt Your Data in Isolated Mode	4-18
	4.0.0	Gtop 4. Enorypt Tour Buta in Isolated Mode	7 10
5	Encrypt	ing Columns in Tables	
	5.1 Abo	ut Encrypting Columns in Tables	5-1
	5.2 Data	Types That Can Be Encrypted with TDE Column Encryption	5-2
	5.3 Res	trictions on Using TDE Column Encryption	5-3
	5.4 Crea	ating Tables with Encrypted Columns	5-4

5.4.3 Creating a Table with an Encrypted Column Using No Algorithm or a Non-Default Algorithm 5.4.4 Using the NOMAC Parameter to Save Disk Space and Improve Performance 5.4.5 Example: Using the NOMAC Parameter in a CREATE TABLE Statement 5.4.6 Example: Changing the Integrity Algorithm for a Table 5.4.7 Creating an Encrypted Column in an External Table 5.5.1 About Encrypting Columns in Existing Tables 5.5.2 Adding an Encrypted Column to an Existing Tables 5.5.3 Encrypting an Unencrypted Column 5.5.4 Disabling Encryption on a Column 5.5.4 Disabling Encryption on a Column 5.5.6 Creating an Index on an Encrypted Column 5.7 Adding Salt to an Encrypted Column 5.8 Removing Salt from an Encrypted Column 5.9 Changing the Encryption Key or Algorithm for Tables with Encrypted Column 5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables Encryption Conversions for Tablespaces and Databases 6.1 About Encryption Conversion for Tablespaces and Databases 6.2 Impact of a Closed TDE Keystore on Encrypted Tablespaces Encryption 6.4 Creating an Encrypted New Tablespace 6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.2 Step 2: Set the Tablespace TDE Master Encryption Key 6.4.3 Step 3: Create the Encrypted Tablespace 6.4.3.1 About Creating an Encrypted Tablespace 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.5 Setting the Tablespace Encryption Default Algorithm 6.6 Encrypting Future Tablespaces to be Encrypted 6.6.1 About Encrypting Future Tablespaces 6.6.2 Setting Future Tablespaces to be Encrypted 6.6.3 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.6.5 Setting Future Tablespaces to be Encrypted	5.4.1	About Creating Tables with Encrypted Columns	5-4
Default Algorithm 5.4.4 Using the NOMAC Parameter to Save Disk Space and Improve Performance 5.4.5 Example: Using the NOMAC Parameter in a CREATE TABLE Statement 5.4.6 Example: Using the NOMAC Parameter in a CREATE TABLE Statement 5.4.7 Creating an Encrypted Column in an External Table 5.4.7 Creating an Encrypted Column in an External Table 5.5.1 About Encrypting Columns in Existing Tables 5.5.2 Adding an Encrypted Column to an Existing Tables 5.5.3 Encrypting an Unencrypted Column 5.5.4 Disabling Encryption on a Column 5.5.4 Disabling Encryption on a Column 5.5.6 Creating an Index on an Encrypted Column 5.6 Creating an Index on an Encrypted Column 5.7 Adding Salt to an Encrypted Column 5.9 Changing the Encryption Key or Algorithm for Tables with Encrypted Columns 5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables Encryption Conversions for Tablespaces and Databases 6.1 About Encryption Conversion for Tablespaces and Databases 6.2 Impact of a Closed TDE Keystore on Encrypted Tablespaces 6.3 Restrictions on Using Transparent Data Encryption Tablespace Encryption 6.4 Creating an Encrypted New Tablespace 6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.2 Step 2: Set the Tablespace TDE Master Encryption Key 6.4.3 Step 3: Create the Encrypted Tablespace 6.4.3.1 About Creating Encrypted Tablespace 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses AES192 6.4.3.5 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.6 Encrypting Future Tablespaces 6.6.1 About Encrypting Future Tablespaces 6.6.2 Setting Future Tablespaces to be Encrypted 6.6.3 Setting Future Tablespaces to be Encrypted	5.4.2	Creating a Table with an Encrypted Column Using the Default Algorithm	5-4
5.4.5 Example: Using the NOMAC Parameter in a CREATE TABLE Statement 5.4.6 Example: Changing the Integrity Algorithm for a Table 5.4.7 Creating an Encrypted Column in an External Table 5.5 Encrypting Columns in Existing Tables 5.5.1 About Encrypting Columns in Existing Tables 5.5.2 Adding an Encrypted Column to an Existing Table 5.5.3 Encrypting an Unencrypted Column 5.5.4 Disabling Encryption on a Column 5.5.5 Disabling Encryption on a Column 5.6 Creating an Index on an Encrypted Column 5.7 Adding Salt to an Encrypted Column 5.8 Removing Salt from an Encrypted Column 5.9 Changing the Encryption Key or Algorithm for Tables with Encrypted Columns 5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables 5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables 6.2 Impact of a Closed TDE Keystore on Encrypted Tablespaces 6.3 Restrictions on Using Transparent Data Encryption Tablespace Encryption 6.4 Creating an Encrypted New Tablespace 6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.3.2 Step 2: Set the Tablespace TDE Master Encryption Key 6.4.3.3 Example: Creating an Encrypted Tablespace 6.4.3.1 About Creating Encrypted Tablespace 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace 6.4.3.4 Example: Creating an Encrypted Tablespace 6.4.3.5 Example: Creating an Encrypted Tablespace 6.5 Setting the Tablespaces Encryption Default Algorithm 6.6 Encrypting Future Tablespaces 6.6.1 About Encrypting Future Tablespaces 6.6.2 Setting Future Tablespaces to be Encrypted 6.6.5 Setting Future Tablespaces to be Encrypted	5.4.3	· · · · · · · · · · · · · · · · · · ·	5-5
5.4.6 Example: Changing the Integrity Algorithm for a Table 5.4.7 Creating an Encrypted Column in an External Table 5.5.1 About Encrypting Columns in Existing Tables 5.5.1 About Encrypting Columns in Existing Tables 5.5.2 Adding an Encrypted Column to an Existing Table 5.5.3 Encrypting an Unencrypted Column 5.5.4 Disabling Encryption on a Column 5.5.5 Adding Salt to an Encrypted Column 5.6 Creating an Index on an Encrypted Column 5.7 Adding Salt to an Encrypted Column 5.8 Removing Salt from an Encrypted Column 5.9 Changing the Encryption Key or Algorithm for Tables with Encrypted Columns 5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables Encryption Conversions for Tablespaces and Databases 6.1 About Encryption Conversion for Tablespaces and Databases 6.2 Impact of a Closed TDE Keystore on Encrypted Tablespace Encryption 6.4 Creating an Encrypted New Tablespace 6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.2 Step 2: Set the Tablespace TDE Master Encryption Key 6.4.3 Step 3: Create the Encrypted Tablespace 6.4.3.1 About Creating an Encrypted Tablespace 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace 6.4.3.4 Example: Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192 6.5 Setting the Tablespaces 6.6.1 About Encrypting Future Tablespaces 6.6.2 Setting Future Tablespaces 6.6.3 Encrypting Future Tablespaces 6.6.4 About Encrypting Future Tablespaces 6.6.5 Setting Future Tablespaces 6.6.6.2 Setting Future Tablespaces to be Encrypted 6.6.5 Setting Future Tablespaces to be Encrypted	5.4.4	Using the NOMAC Parameter to Save Disk Space and Improve Performance	5-6
5.4.7 Creating an Encrypted Column in an External Table 5.5 Encrypting Columns in Existing Tables 5.5.1 About Encrypting Columns in Existing Tables 5.5.2 Adding an Encrypted Column to an Existing Table 5.5.3 Encrypting an Unencrypted Column 5.5.4 Disabling Encryption on a Column 5.5.5 Disabling Encryption on a Column 5.6 Creating an Index on an Encrypted Column 5.7 Adding Salt to an Encrypted Column 5.8 Removing Salt from an Encrypted Column 5.9 Changing the Encryption Key or Algorithm for Tables with Encrypted Columns 5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables 5.11 About Encryption Conversions for Tablespaces and Databases 6.12 Impact of a Closed TDE Keystore on Encrypted Tablespaces 6.2 Impact of a Closed TDE Keystore on Encryption Tablespace Encryption 6.4 Creating an Encrypted New Tablespace 6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.3 Step 2: Set the Tablespace TDE Master Encryption Key 6.4.3 Step 3: Create the Encrypted Tablespace 6.4.3.1 About Creating Encrypted Tablespace 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses AES192 6.4.3.5 Extring the Creating an Encrypted Tablespace That Uses the Default Algorithm 6.5 Setting the Tablespace Encryption Default Algorithm 6.6 Encrypting Future Tablespaces 6.6.1 About Encrypting Future Tablespaces 6.6.2 Setting Future Tablespaces to be Encrypted 6.5 Setting Future Tablespaces to be Encrypted	5.4.5	Example: Using the NOMAC Parameter in a CREATE TABLE Statement	5-6
5.5 Encrypting Columns in Existing Tables 5.5.1 About Encrypting Columns in Existing Tables 5.5.2 Adding an Encrypted Column to an Existing Table 5.5.3 Encrypting an Unencrypted Column 5.5.4 Disabling Encryption on a Column 5.6 Creating an Index on an Encrypted Column 5.7 Adding Salt to an Encrypted Column 5.8 Removing Salt from an Encrypted Column 5.9 Changing the Encryption Key or Algorithm for Tables with Encrypted Columns 5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables 5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables Encryption Conversions for Tablespaces and Databases 6.1 About Encryption Conversion for Tablespaces and Databases 6.2 Impact of a Closed TDE Keystore on Encrypted Tablespaces 6.3 Restrictions on Using Transparent Data Encryption Tablespace Encryption 6.4 Creating an Encrypted New Tablespace 6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.3 Step 2: Set the Tablespace TDE Master Encryption Key 6.4.3 Step 3: Create the Encrypted Tablespace 6.4.3.1 About Creating Encrypted Tablespace 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.5 Setting the Tablespaces Encryption Default Algorithm 6.6 Encrypting Future Tablespaces 6.6.1 About Encrypting Future Tablespaces 6.6.2 Setting Future Tablespaces to be Encrypted	5.4.6	Example: Changing the Integrity Algorithm for a Table	5-7
5.5.1 About Encrypting Columns in Existing Tables 5.5.2 Adding an Encrypted Column to an Existing Table 5.5.3 Encrypting an Unencrypted Column 5.5.4 Disabling Encryption on a Column 5.6 Creating an Index on an Encrypted Column 5.7 Adding Salt to an Encrypted Column 5.8 Removing Salt from an Encrypted Column 5.9 Changing the Encryption Key or Algorithm for Tables with Encrypted Columns 5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables 5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables 5.10 Encryption Conversions for Tablespaces and Databases 6.1 About Encryption Conversion for Tablespaces and Databases 6.2 Impact of a Closed TDE Keystore on Encrypted Tablespace Encryption 6.4 Creating an Encrypted New Tablespace 6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.3 Step 2: Set the Tablespace TDE Master Encryption Key 6.4.3 Step 3: Create the Encrypted Tablespace 6.4.3.1 About Creating Encrypted Tablespace 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.5 Setting the Tablespaces Encryption Default Algorithm 6.6 Encrypting Future Tablespaces 6.6.1 About Encrypting Future Tablespaces 6.6.2 Setting Future Tablespaces to be Encrypted	5.4.7	Creating an Encrypted Column in an External Table	5-7
5.5.2 Adding an Encrypted Column to an Existing Table 5.5.3 Encrypting an Unencrypted Column 5.5.4 Disabling Encryption on a Column 5.5.5 Adding Salt to an Encrypted Column 5.6 Creating an Index on an Encrypted Column 5.7 Adding Salt to an Encrypted Column 5.8 Removing Salt from an Encrypted Column 5.9 Changing the Encryption Key or Algorithm for Tables with Encrypted Columns 5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables 5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables Encryption Conversions for Tablespaces and Databases 6.1 About Encryption Conversion for Tablespaces and Databases 6.2 Impact of a Closed TDE Keystore on Encrypted Tablespaces 6.3 Restrictions on Using Transparent Data Encryption Tablespace Encryption 6.4 Creating an Encrypted New Tablespace 6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.2 Step 2: Set the Tablespace TDE Master Encryption Key 6.4.3 Step 3: Create the Encrypted Tablespace 6.4.3.1 About Creating Encrypted Tablespace 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.5 Setting the Tablespace Encryption Default Algorithm 6.6 Encrypting Future Tablespaces 6.6.1 About Encrypting Future Tablespaces 6.6.2 Setting Future Tablespaces to be Encrypted	5.5 Encry	pting Columns in Existing Tables	5-8
5.5.3 Encrypting an Unencrypted Column 5.5.4 Disabling Encryption on a Column 5.5.4 Disabling Encryption on a Column 5.6 Creating an Index on an Encrypted Column 5.7 Adding Salt to an Encrypted Column 5.8 Removing Salt from an Encrypted Column 5.9 Changing the Encryption Key or Algorithm for Tables with Encrypted Columns 5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables 5.10 Encryption Conversions for Tablespaces and Databases 6.1 About Encryption Conversion for Tablespaces and Databases 6.2 Impact of a Closed TDE Keystore on Encrypted Tablespaces 6.3 Restrictions on Using Transparent Data Encryption Tablespace Encryption 6.4 Creating an Encrypted New Tablespace 6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.2 Steting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.2 Step 2: Set the Tablespace TDE Master Encryption Key 6.4.3 Step 3: Create the Encrypted Tablespace 6.4.3.1 About Creating Encrypted Tablespace 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.5 Setting the Tablespace Encryption Default Algorithm 6.6 Encrypting Future Tablespaces 6.6.1 About Encrypting Future Tablespaces 6.6.2 Setting Future Tablespaces to be Encrypted	5.5.1	About Encrypting Columns in Existing Tables	5-8
5.5.4 Disabling Encryption on a Column 5.6 Creating an Index on an Encrypted Column 5.7 Adding Salt to an Encrypted Column 5.8 Removing Salt from an Encrypted Column 5.9 Changing the Encryption Key or Algorithm for Tables with Encrypted Columns 5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables Encryption Conversions for Tablespaces and Databases 6.1 About Encryption Conversion for Tablespaces and Databases 6.2 Impact of a Closed TDE Keystore on Encrypted Tablespaces 6.3 Restrictions on Using Transparent Data Encryption Tablespace Encryption 6.4 Creating an Encrypted New Tablespace 6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.2 Step 2: Set the Tablespace TDE Master Encryption Key 6.4.3 Step 3: Create the Encrypted Tablespace 6.4.3.1 About Creating Encrypted Tablespace 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.5 Setting the Tablespace Encryption Default Algorithm 6.6 Encrypting Future Tablespaces 6.6.1 About Encrypting Future Tablespaces 6.6.2 Setting Future Tablespaces to be Encrypted	5.5.2	Adding an Encrypted Column to an Existing Table	5-8
5.6 Creating an Index on an Encrypted Column 5.7 Adding Salt to an Encrypted Column 5.8 Removing Salt from an Encrypted Column 5.9 Changing the Encryption Key or Algorithm for Tables with Encrypted Columns 5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables 5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables 5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables 5.11 About Encryption Conversions for Tablespaces and Databases 6.1 About Encryption Conversion for Tablespaces and Databases 6.2 Impact of a Closed TDE Keystore on Encrypted Tablespaces 6.3 Restrictions on Using Transparent Data Encryption Tablespace Encryption 6.4 Creating an Encrypted New Tablespace 6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.3 Step 3: Create the Encrypted Tablespace 6.4.3.1 About Creating Encrypted Tablespace 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses AES192 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.5 Setting the Tablespace Encryption Default Algorithm 6.6 Encrypting Future Tablespaces 6.6.1 About Encrypting Future Tablespaces 6.6.2 Setting Future Tablespaces to be Encrypted	5.5.3	Encrypting an Unencrypted Column	5-8
5.7 Adding Salt to an Encrypted Column 5.8 Removing Salt from an Encrypted Column 5.9 Changing the Encryption Key or Algorithm for Tables with Encrypted Columns 5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables 5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables 5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables 5.11 About Encryption Conversions for Tablespaces and Databases 6.1 About Encryption Conversion for Tablespaces and Databases 6.2 Impact of a Closed TDE Keystore on Encrypted Tablespaces 6.3 Restrictions on Using Transparent Data Encryption Tablespace Encryption 6.4 Creating an Encrypted New Tablespace 6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.3 Step 2: Set the Tablespace TDE Master Encryption Key 6.4.3 Step 3: Create the Encrypted Tablespace 6.4.3.1 About Creating Encrypted Tablespace 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.5 Setting the Tablespace Encryption Default Algorithm 6.6 Encrypting Future Tablespaces 6.6.1 About Encrypting Future Tablespaces 6.6.2 Setting Future Tablespaces to be Encrypted	5.5.4	Disabling Encryption on a Column	5-9
5.8 Removing Salt from an Encrypted Column 5.9 Changing the Encryption Key or Algorithm for Tables with Encrypted Columns 5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables 5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables 5.11 About Encryption Conversions for Tablespaces and Databases 6.1 About Encryption Conversion for Tablespaces and Databases 6.2 Impact of a Closed TDE Keystore on Encrypted Tablespaces 6.3 Restrictions on Using Transparent Data Encryption Tablespace Encryption 6.4 Creating an Encrypted New Tablespace 6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.3 Step 2: Set the Tablespace TDE Master Encryption Key 6.4.3 Step 3: Create the Encrypted Tablespace 6.4.3.1 About Creating Encrypted Tablespace 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.5 Setting the Tablespace Encryption Default Algorithm 6.6 Encrypting Future Tablespaces 6.6.1 About Encrypting Future Tablespaces 6.6.2 Setting Future Tablespaces to be Encrypted	5.6 Crea	ing an Index on an Encrypted Column	5-9
5.9 Changing the Encryption Key or Algorithm for Tables with Encrypted Columns 5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables 5.11 About Encryption Conversions for Tablespaces and Databases 6.1 About Encryption Conversion for Tablespaces and Databases 6.2 Impact of a Closed TDE Keystore on Encrypted Tablespaces 6.3 Restrictions on Using Transparent Data Encryption Tablespace Encryption 6.4 Creating an Encrypted New Tablespace 6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.3 Step 2: Set the Tablespace TDE Master Encryption Key 6.4.3 Step 3: Create the Encrypted Tablespace 6.4.3.1 About Creating Encrypted Tablespace 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.5 Setting the Tablespaces Encryption Default Algorithm 6.6 Encrypting Future Tablespaces 6.6.1 About Encrypting Future Tablespaces 6.6.2 Setting Future Tablespaces to be Encrypted	5.7 Addir	g Salt to an Encrypted Column	5-9
Encryption Conversions for Tablespaces and Databases 6.1 About Encryption Conversion for Tablespaces and Databases 6.2 Impact of a Closed TDE Keystore on Encrypted Tablespaces 6.3 Restrictions on Using Transparent Data Encryption Tablespace Encryption 6.4 Creating an Encrypted New Tablespace 6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.2 Step 2: Set the Tablespace TDE Master Encryption Key 6.4.3 Step 3: Create the Encrypted Tablespace 6.4.3.1 About Creating Encrypted Tablespace 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.5 Setting the Tablespaces 6.6.6 Encrypting Future Tablespaces 6.6.1 About Encrypting Future Tablespaces 6.6.2 Setting Future Tablespaces to be Encrypted 6.5	5.8 Remo	oving Salt from an Encrypted Column	5-10
Encryption Conversions for Tablespaces and Databases 6.1 About Encryption Conversion for Tablespaces and Databases 6.2 Impact of a Closed TDE Keystore on Encrypted Tablespaces 6.3 Restrictions on Using Transparent Data Encryption Tablespace Encryption 6.4 Creating an Encrypted New Tablespace 6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.3 Step 2: Set the Tablespace TDE Master Encryption Key 6.4.3 Step 3: Create the Encrypted Tablespace 6.4.3.1 About Creating Encrypted Tablespace 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.5 Setting the Tablespace Encryption Default Algorithm 6.6 Encrypting Future Tablespaces 6.6.1 About Encrypting Future Tablespaces 6.6.2 Setting Future Tablespaces to be Encrypted 6.5 Setting Future Tablespaces to be Encrypted	5.9 Chan	ging the Encryption Key or Algorithm for Tables with Encrypted Columns	5-10
Encryption Conversions for Tablespaces and Databases 6.1 About Encryption Conversion for Tablespaces and Databases 6.2 Impact of a Closed TDE Keystore on Encrypted Tablespaces 6.3 Restrictions on Using Transparent Data Encryption Tablespace Encryption 6.4 Creating an Encrypted New Tablespace 6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.3 Step 2: Set the Tablespace TDE Master Encryption Key 6.4.3.1 About Creating Encrypted Tablespace 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.5 Setting the Tablespace Encryption Default Algorithm 6.6 Encrypting Future Tablespaces 6.6.1 About Encrypting Future Tablespaces 6.6.2 Setting Future Tablespaces to be Encrypted	5.10 Mig	ating the Algorithm to the Latest Supported Algorithm for Tables	5-10
6.3 Restrictions on Using Transparent Data Encryption Tablespace Encryption 6.4 Creating an Encrypted New Tablespace 6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.2 Step 2: Set the Tablespace TDE Master Encryption Key 6.4.3 Step 3: Create the Encrypted Tablespace 6.4.3.1 About Creating Encrypted Tablespace 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.5 Setting the Tablespace Encryption Default Algorithm 6.6 Encrypting Future Tablespaces 6.6.1 About Encrypting Future Tablespaces to be Encrypted 6.5 Setting Future Tablespaces to be Encrypted		**	
6.4 Creating an Encrypted New Tablespace 6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.2 Step 2: Set the Tablespace TDE Master Encryption Key 6.4.3 Step 3: Create the Encrypted Tablespace 6.4.3.1 About Creating Encrypted Tablespace 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.5 Setting the Tablespace Encryption Default Algorithm 6.6 Encrypting Future Tablespaces 6.6.1 About Encrypting Future Tablespaces to be Encrypted 6.5 Setting Future Tablespaces to be Encrypted	6.2 Impa	ct of a Closed TDE Keystore on Encrypted Tablespaces	6-4
6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.2 Step 2: Set the Tablespace TDE Master Encryption Key 6.4.3 Step 3: Create the Encrypted Tablespace 6.4.3.1 About Creating Encrypted Tablespace 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.5.5 Setting the Tablespace Encryption Default Algorithm 6.6.6 Encrypting Future Tablespaces 6.6.1 About Encrypting Future Tablespaces to be Encrypted 6.5.2 Setting Future Tablespaces to be Encrypted	6.3 Restr	ictions on Using Transparent Data Encryption Tablespace Encryption	6-5
Encryption 6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.2 Step 2: Set the Tablespace TDE Master Encryption Key 6.4.3 Step 3: Create the Encrypted Tablespace 6.4.3.1 About Creating Encrypted Tablespace 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.5 Setting the Tablespace Encryption Default Algorithm 6.6 Encrypting Future Tablespaces 6.6.1 About Encrypting Future Tablespaces to be Encrypted 6.1	3.4 Crea	ing an Encrypted New Tablespace	6-6
Encryption 6.4.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption 6.4.2 Step 2: Set the Tablespace TDE Master Encryption Key 6.4.3 Step 3: Create the Encrypted Tablespace 6.4.3.1 About Creating Encrypted Tablespaces 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.5.5 Setting the Tablespace Encryption Default Algorithm 6.5.6 Encrypting Future Tablespaces 6.5.6.2 Setting Future Tablespaces to be Encrypted 6.5.5 Setting Future Tablespaces 5.5 Setting Future Tablespaces 5.5 Setting Future Tablespaces 5	6.4.1	·	6-6
Encryption 6- 6.4.2 Step 2: Set the Tablespace TDE Master Encryption Key 6- 6.4.3 Step 3: Create the Encrypted Tablespace 6- 6.4.3.1 About Creating Encrypted Tablespaces 6- 6.4.3.2 Creating an Encrypted Tablespace 6- 6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192 6- 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6- 6.5 Setting the Tablespace Encryption Default Algorithm 6- 6.6 Encrypting Future Tablespaces 6- 6.6.1 About Encrypting Future Tablespaces 6- 6.6.2 Setting Future Tablespaces to be Encrypted 6-1	6.4	· · · · · · · · · · · · · · · · · · ·	6-6
6.4.3 Step 3: Create the Encrypted Tablespace 6.4.3.1 About Creating Encrypted Tablespaces 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.5 Setting the Tablespace Encryption Default Algorithm 6.6 Encrypting Future Tablespaces 6.6.1 About Encrypting Future Tablespaces 6.6.2 Setting Future Tablespaces to be Encrypted 6.6.3 Setting Future Tablespaces to be Encrypted 6.6.4 Setting Future Tablespaces to be Encrypted 6.6.5 Setting Future Tablespaces to be Encrypted	6.4	·	6-7
6.4.3.1 About Creating Encrypted Tablespaces 6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.5 Setting the Tablespace Encryption Default Algorithm 6.6 Encrypting Future Tablespaces 6.1 About Encrypting Future Tablespaces 6.1 6.2 Setting Future Tablespaces to be Encrypted 6.1	6.4.2	Step 2: Set the Tablespace TDE Master Encryption Key	6-8
6.4.3.2 Creating an Encrypted Tablespace 6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.5 Setting the Tablespace Encryption Default Algorithm 6.6 Encrypting Future Tablespaces 6.6.1 About Encrypting Future Tablespaces 6.6.2 Setting Future Tablespaces to be Encrypted 6.6	6.4.3	Step 3: Create the Encrypted Tablespace	6-8
6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192 6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6.5 Setting the Tablespace Encryption Default Algorithm 6.6 Encrypting Future Tablespaces 6.6.1 About Encrypting Future Tablespaces 6.6.2 Setting Future Tablespaces to be Encrypted 6.5 Setting Future Tablespaces to 6.5 Setting Future Tablespaces to 6.6 Encrypted	6.4	3.1 About Creating Encrypted Tablespaces	6-8
6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm 6- 6.5 Setting the Tablespace Encryption Default Algorithm 6-1 6.6 Encrypting Future Tablespaces 6-1 6.6.1 About Encrypting Future Tablespaces 6-1 6.6.2 Setting Future Tablespaces to be Encrypted 6-1	6.4	3.2 Creating an Encrypted Tablespace	6-9
Algorithm 6-1 6.5 Setting the Tablespace Encryption Default Algorithm 6-1 6.6 Encrypting Future Tablespaces 6-1 6.6.1 About Encrypting Future Tablespaces 6-1 6.6.2 Setting Future Tablespaces to be Encrypted 6-1	6.4	3.3 Example: Creating an Encrypted Tablespace That Uses AES192	6-9
6.6 Encrypting Future Tablespaces 6-1 6.6.1 About Encrypting Future Tablespaces 6-1 6.6.2 Setting Future Tablespaces to be Encrypted 6-1	6.4		6-9
6.6.1 About Encrypting Future Tablespaces 6-1 6.6.2 Setting Future Tablespaces to be Encrypted 6-1	6.5 Settir	g the Tablespace Encryption Default Algorithm	6-10
6.6.2 Setting Future Tablespaces to be Encrypted 6-1	6.6 Encry	pting Future Tablespaces	6-11
71	6.6.1	About Encrypting Future Tablespaces	6-11
	6.6.2	Setting Future Tablespaces to be Encrypted	6-12
····· · · · · · · · · · · · · · · · ·	6.7 Encry	•	6-13

6.8.1	About Encryption Conversions for Existing Offline Tablespaces	6-14
6.8.2	Encrypting an Existing User-Defined Tablespace with Offline Conversion	6-16
6.8.3	Decrypting an Existing Tablespace with Offline Conversion	6-17
6.9 Encr	yption Conversions for Existing Online Tablespaces	6-18
6.9.1	About Encryption Conversions for Existing Online Tablespaces	6-18
6.9.2	Encrypting an Existing Tablespace with Online Conversion	6-20
6.9.3	Rekeying an Existing Tablespace with Online Conversion	6-22
6.9.4	Rekeying the SYSAUX and UNDO Tablespaces with Online Conversion	6-23
6.9.5	Decrypting an Existing Tablespace with Online Conversion	6-24
6.9.6	Finishing an Interrupted Online Encryption Conversion	6-25
6.10 Rel	keying an Encrypted Tablespace	6-26
6.11 Cre	ating an Encrypted Database Using DBCA	6-27
6.11.1	Using DBCA to Create an Encrypted Database	6-27
6.11.2	Using DBCA to Create an Oracle Data Guard Standby Database from an	
	Encrypted Primary Database	6-28
6.11.3	Best Practice after DBCA Creates an Encrypted Database	6-29
6.12 End	cryption Conversions for Existing Databases	6-30
6.12.1	3	6-30
C 1 2 2	Encrypting an Existing Database with Offline Conversion	6-31
6.12.2	<i>y</i> 1 3	6 22
6.12.3	Encrypting an Existing Database with Online Conversion	6-33
6.12.3 Managi	Encrypting an Existing Database with Online Conversion ng the Keystore and the Master Encryption Key	6-33
6.12.3 Managi	Encrypting an Existing Database with Online Conversion	
6.12.3 Managi 7.1 Man	Encrypting an Existing Database with Online Conversion ng the Keystore and the Master Encryption Key aging the Keystore	7-1
6.12.3 Managi 7.1 Man 7.1.1 7.1.2	Encrypting an Existing Database with Online Conversion Ing the Keystore and the Master Encryption Key aging the Keystore Performing Operations That Require a Keystore Password	7-1 7-2
6.12.3 Managi 7.1 Man 7.1.1 7.1.2 7.1	Encrypting an Existing Database with Online Conversion Ing the Keystore and the Master Encryption Key aging the Keystore Performing Operations That Require a Keystore Password Configuring Auto-Open Connections into External Key Managers 2.2.1 About Auto-Open Connections into External Key Managers	7-1 7-2 7-3
6.12.3 Managi 7.1 Man 7.1.1 7.1.2 7.1	Encrypting an Existing Database with Online Conversion Ing the Keystore and the Master Encryption Key aging the Keystore Performing Operations That Require a Keystore Password Configuring Auto-Open Connections into External Key Managers 1.2.1 About Auto-Open Connections into External Key Managers	7-1 7-2 7-3 7-3
6.12.3 Managi 7.1 Man 7.1.1 7.1.2 7.1 7.1	Encrypting an Existing Database with Online Conversion Ing the Keystore and the Master Encryption Key aging the Keystore Performing Operations That Require a Keystore Password Configuring Auto-Open Connections into External Key Managers 1.2.1 About Auto-Open Connections into External Key Managers 1.2.2 Configuring an Auto-Open Connection into an External Key Manager	7-1 7-2 7-3 7-3 7-3
6.12.3 Managi 7.1 Man 7.1.1 7.1.2 7.1 7.1.3 7.1.3	Encrypting an Existing Database with Online Conversion Ing the Keystore and the Master Encryption Key Inging the Keystore Performing Operations That Require a Keystore Password Configuring Auto-Open Connections into External Key Managers Inc. 2.1 About Auto-Open Connections into External Key Managers Inc. 2.2 Configuring an Auto-Open Connection into an External Key Manager Changing the Oracle Key Vault Password	7-1 7-2 7-3 7-3 7-3 7-5
6.12.3 Managi 7.1 Man 7.1.1 7.1.2 7.1 7.1.3 7.1.4 7.1	Encrypting an Existing Database with Online Conversion Ing the Keystore and the Master Encryption Key aging the Keystore Performing Operations That Require a Keystore Password Configuring Auto-Open Connections into External Key Managers 2.2.1 About Auto-Open Connections into External Key Managers 2.2.2 Configuring an Auto-Open Connection into an External Key Manager Changing the Oracle Key Vault Password Configuring an External Store for a Keystore Password	7-1 7-2 7-3 7-3 7-3 7-5 7-5
6.12.3 Managi 7.1 Man 7.1.1 7.1.2 7.1 7.1.3 7.1.4 7.1 7.1	Encrypting an Existing Database with Online Conversion Ing the Keystore and the Master Encryption Key Inging the Keystore Performing Operations That Require a Keystore Password Configuring Auto-Open Connections into External Key Managers Inc. 2.1 About Auto-Open Connections into External Key Managers Inc. 2.2 Configuring an Auto-Open Connection into an External Key Manager Changing the Oracle Key Vault Password Configuring an External Store for a Keystore Password Ind. 4.1 About Configuring an External Store for a Keystore Password	7-1 7-2 7-3 7-3 7-3 7-5 7-5
6.12.3 Managi 7.1 Man 7.1.1 7.1.2 7.1 7.1.3 7.1.4 7.1 7.1	Encrypting an Existing Database with Online Conversion Ing the Keystore and the Master Encryption Key Ing the Keystore and the Master Encryption Key Inguing the Keystore Inguing Performing Operations That Require a Keystore Password Inguing Auto-Open Connections into External Key Managers Inguing Auto-Open Connections into External Key Managers Inguing Auto-Open Connection into an External Key Manager Inguing the Oracle Key Vault Password Inguing an External Store for a Keystore Password Inguing Auto-Open Connection into an External Key Manager Inguing the Oracle Key Vault Password Inguing Auto-Open Connection into an External Key Manager Inguing Auto-Open Connection	7-1 7-2 7-3 7-3 7-5 7-5 7-6 7-6
6.12.3 Managi 7.1 Man 7.1.1 7.1.2 7.1 7.1.3 7.1.4 7.1 7.1 7.1 7.1.5	Encrypting an Existing Database with Online Conversion Ing the Keystore and the Master Encryption Key Inging the Keystore Performing Operations That Require a Keystore Password Configuring Auto-Open Connections into External Key Managers Indicate: Ind	7-1 7-2 7-3 7-3 7-5 7-5 7-6 7-6
6.12.3 Managi 7.1 Man 7.1.1 7.1.2 7.1 7.1.3 7.1.4 7.1 7.1 7.1.5 7.1.5	Encrypting an Existing Database with Online Conversion Ing the Keystore and the Master Encryption Key Inging the Keystore Performing Operations That Require a Keystore Password Configuring Auto-Open Connections into External Key Managers Indicate: 2.2 Configuring an Auto-Open Connection into an External Key Manager Changing the Oracle Key Vault Password Configuring an External Store for a Keystore Password Indicate: 4.1 About Configuring an External Store for a Keystore Password Indicate: 4.2 Configuring the External Keystore Password Store with WALLET_ROOT Indicate: 4.3 When to Use the EXTERNAL STORE Clause After Configuration Backing Up Password-Protected TDE Wallets	7-1 7-2 7-3 7-3 7-5 7-5 7-6 7-6 7-6 7-7
6.12.3 Managi 7.1 Man 7.1.1 7.1.2 7.1 7.1.3 7.1.4 7.1 7.1 7.1.5 7.1 7.1.5	Encrypting an Existing Database with Online Conversion Ing the Keystore and the Master Encryption Key Inguing the Keystore Performing Operations That Require a Keystore Password Configuring Auto-Open Connections into External Key Managers Industrial About Auto-Open Connections into External Key Managers Industrial About Auto-Open Connection into an External Key Manager Changing the Oracle Key Vault Password Configuring an External Store for a Keystore Password Industrial About Configuring an External Store for a Keystore Password Industrial About Configuring an External Store for a Keystore Password Industrial About Configuring an External Store For a Keystore Password Industrial About Configuring an External Store For a Keystore Password Industrial About Configuring About Backing Up Password-Protected TDE Wallets Industrial About Backing Up Password-Protected TDE Wallets	7-1 7-2 7-3 7-3 7-5 7-5 7-6 7-6 7-7
6.12.3 Managi 7.1 Man 7.1.1 7.1.2 7.1 7.1.3 7.1.4 7.1 7.1.5 7.1 7.1.5	Encrypting an Existing Database with Online Conversion Ing the Keystore and the Master Encryption Key Inging the Keystore Performing Operations That Require a Keystore Password Configuring Auto-Open Connections into External Key Managers Indicate: 2.2 Configuring an Auto-Open Connection into an External Key Manager Changing the Oracle Key Vault Password Configuring an External Store for a Keystore Password Indicate: 4.1 About Configuring an External Store for a Keystore Password Indicate: 4.2 Configuring the External Keystore Password Store with WALLET_ROOT Indicate: 4.3 When to Use the EXTERNAL STORE Clause After Configuration Backing Up Password-Protected TDE Wallets Indicate: 5.1 About Backing Up Password-Protected TDE Wallets Indicate: 5.2 Creating a Backup Identifier String for the Backup TDE Wallets	7-1 7-2 7-3 7-3 7-5 7-5 7-6 7-6 7-7 7-7
6.12.3 Managil 7.1 Man 7.1.1 7.1.2 7.1 7.1.3 7.1.4 7.1 7.1 7.1.5 7.1 7.1 7.1 7.1 7	Encrypting an Existing Database with Online Conversion Ing the Keystore and the Master Encryption Key Inging the Keystore Performing Operations That Require a Keystore Password Configuring Auto-Open Connections into External Key Managers Indicate: 2.2 Configuring an Auto-Open Connection into an External Key Manager Changing the Oracle Key Vault Password Configuring an External Store for a Keystore Password Indicate: 2.4.1 About Configuring an External Store for a Keystore Password Indicate: 3.4.2 Configuring the External Keystore Password Store with WALLET_ROOT Indicate: 4.4.3 When to Use the EXTERNAL STORE Clause After Configuration Backing Up Password-Protected TDE Wallets Indicate: 4.5.1 About Backing Up Password-Protected TDE Wallets Indicate: 4.5.2 Creating a Backup Identifier String for the Backup TDE Wallet Indicate: 4.5.3 Backing Up a Password-Protected TDE Wallet	7-1 7-2 7-3 7-3 7-5 7-5 7-6 7-6 7-7 7-7 7-7
6.12.3 Managi 7.1 Man 7.1.1 7.1.2 7.1 7.1.3 7.1.4 7.1 7.1.5 7.1 7.1.5 7.1 7.1.6	Encrypting an Existing Database with Online Conversion Ing the Keystore and the Master Encryption Key Inging the Keystore Performing Operations That Require a Keystore Password Configuring Auto-Open Connections into External Key Managers Indicate: Configuring an Auto-Open Connection into an External Key Manager Changing the Oracle Key Vault Password Configuring an External Store for a Keystore Password Indicate: About Configuring an External Store for a Keystore Password Indicate: About Configuring an External Store For a Keystore Password Indicate: About Configuring an External Store For a Keystore Password Indicate: About Configuring the External Keystore Password Store with WALLET_ROOT Indicate: About Backing Up Password-Protected TDE Wallets Indicate: About Backing Database Value Indicate: About Back	7-1 7-2 7-3 7-3 7-5 7-5 7-6 7-6 7-7 7-7 7-7 7-8 7-9
6.12.3 Managi 7.1 Man 7.1.1 7.1.2 7.1 7.1.3 7.1.4 7.1 7.1.5 7.1 7.1.6 7.1.7 7.1.8	Encrypting an Existing Database with Online Conversion Ing the Keystore and the Master Encryption Key Inging the Keystore Performing Operations That Require a Keystore Password Configuring Auto-Open Connections into External Key Managers Indicate: Indicate: Configuring an Auto-Open Connection into an External Key Managers Indicate: Configuring an Auto-Open Connection into an External Key Manager Changing the Oracle Key Vault Password Configuring an External Store for a Keystore Password Indicate: About Configuring an External Store for a Keystore Password Indicate: Configuring the External Keystore Password Store with WALLET_ROOT Indicate: About Backing Up Password-Protected TDE Wallets Indicate: Creating a Backup Identifier String for the Backup TDE Wallet Indicate: About Backing Up Password-Protected TDE Wallet Indicate: About Backing Database Password Indicate: About Backing Database Password Indicate: About Bac	7-1 7-2 7-3 7-3 7-5 7-5 7-6 7-6 7-7 7-7 7-7 7-8 7-9

	7.1.8.2	Merging One TDE Wallet into an Existing TDE Wallet	7-11
	7.1.8.3	Merging Two TDE Wallets into a Third New TDE Wallet	7-11
	7.1.8.4	Merging an Auto-Login TDE Wallet into an Existing Password-Protected TDE Wallet	7-12
	7.1.8.5	Reversing a TDE Wallet Merge Operation	7-13
	7.1.9 Movi	ng a TDE Wallet to a New Location	7-13
	7.1.10 Mov	ving a TDE Wallet Out of Automatic Storage Management	7-14
	7.1.11 Mig	rating from a TDE Wallet to Oracle Key Vault	7-15
	7.1.11.1	Migrating from a Password-Protected TDE Wallet to an External Keystore	7-15
	7.1.11.2	Migrating from an External Keystore to a Password-Based TDE Wallet	7-17
	7.1.11.3	Keystore Order After a Migration	7-19
	7.1.12 Mig	ration of Keystores to and from Oracle Key Vault	7-20
	7.1.13 Cor	nfiguring Keystores for Automatic Storage Management	7-21
	7.1.13.1	About Configuring Keystores for Automatic Storage Management	7-21
	7.1.13.2	Configuring a Keystore to Point to an ASM Location	7-22
	7.1.13.3	Configuring a Keystore to Point to an ASM Location When the WALLET_ROOT Location Does Not Follow OMF Guidelines	7-22
	7.1.14 Mai	naging Updates to the PKCS#11 Library	7-23
	7.1.14.1	About Managing Updates to the PKCS#11 Library	7-23
	7.1.14.2	Switching Over to an Updated PKCS#11 Library	7-24
	7.1.15 Bac	kup and Recovery of Encrypted Data	7-25
	7.1.16 Dar	ngers of Deleting TDE Wallets	7-26
	7.1.17 Fea	tures That Are Affected by Deleted Keystores	7-27
7.2	Managing	the TDE Master Encryption Key	7-28
	7.2.1 TDE	Master Encryption Key Attribute Management	7-28
	7.2.1.1	TDE Master Encryption Key Attributes	7-29
	7.2.1.2	Finding the TDE Master Encryption Key That Is in Use	7-30
	7.2.2 Crea	ting Custom TDE Master Encryption Key Attributes for Reports	7-30
	7.2.2.1	About Creating Custom Attribute Tags	7-30
	7.2.2.2	Creating a Custom Attribute Tag	7-31
	7.2.3 Setti	ng or Rekeying the TDE Master Encryption Key in the Keystore	7-32
	7.2.3.1	About Setting or Rekeying the TDE Master Encryption Key in the Keystore	7-32
	7.2.3.2	Creating, Tagging, and Backing Up a TDE Master Encryption Key	7-33
	7.2.3.3	About Rekeying the TDE Master Encryption Key	7-34
	7.2.3.4	Rekeying the TDE Master Encryption Key	7-34
	7.2.3.5	Changing the TDE Master Encryption Key for a Tablespace	7-35
	7.2.4 Expo	orting and Importing the TDE Master Encryption Key	7-36
	7.2.4.1	About Exporting and Importing the TDE Master Encryption Key	7-37
	7.2.4.2	About Exporting TDE Master Encryption Keys	7-37
	7.2.4.3	Exporting a TDE Master Encryption Key	7-37

7.2	.4.4	Example: Exporting a TDE Master Encryption Key by Using a Subquery	7-38
7.2	.4.5	Example: Exporting a List of TDE Master Encryption Key Identifiers to a	
		File	7-38
	.4.6	Example: Exporting All TDE Master Encryption Keys of the Database	7-39
	.4.7	About Importing TDE Master Encryption Keys	7-39
	.4.8	Importing a TDE Master Encryption Key	7-39
	.4.9	Example: Importing a TDE Master Encryption Key	7-40
7.2	.4.10	How Keystore Merge Differs from TDE Master Encryption Key Export or Import	7-40
7.2.5		verting from ENCRYPTION_WALLET_LOCATION to WALLET_ROOT andCONFIGURATION	7-41
7.2.6	Mana	agement of TDE Master Encryption Keys Using Oracle Key Vault	7-42
7.3 Trans	sparer	nt Data Encryption Data Dynamic and Data Dictionary Views	7-42
۸dminie	torin	ng United Mode	
		ing Keystores and Master Encryption Keys in United Mode	8-1
8.1.1		nging the Keystore Password in United Mode	8-2
	.1.1	Changing the Password-Protected TDE Wallet Password in United Mode	8-2
	.1.2	Changing the Password of an External Keystore in United Mode	8-3
8.1.2		ring Up a Password-Protected TDE Wallet in United Mode	8-4
8.1.3		ing Keystores in United Mode	8-5
	.3.1	About Closing Keystores	8-6
	.3.2	Closing a TDE Wallet in United Mode	8-6
	.3.3	Closing an External Keystore in United Mode	8-7
8.1.4		ting TDE Master Encryption Keys for Later Use in United Mode	8-7
_	.4.1	About Creating a TDE Master Encryption Key for Later Use	8-8
	.4.2	Creating a TDE Master Encryption Key for Later Use in United Mode	8-8
8.1.5		nple: Creating a Master Encryption Key in All PDBs	8-9
8.1.6		ating TDE Master Encryption Keys in United Mode	8-10
	.6.1	About Activating TDE Master Encryption Keys	8-10
	.6.2	Activating a TDE Master Encryption Key in United Mode	8-10
	.6.3	Example: Activating a TDE Master Encryption Key	8-11
8.1.7		ting User-Defined TDE Master Encryption Keys	8-11
	.7.1	About User-Defined TDE Master Encryption Keys	8-12
	.7.2	Creating a User-Defined TDE Master Encryption Key in United Mode	8-12
8.1.8		eying the TDE Master Encryption Key in United Mode	8-14
8.1.9		ng the TDE Master Encryption Key That Is in Use in United Mode	8-15
8.1.10		ating a Custom Attribute Tag in United Mode	8-15
8.1.11		ving TDE Master Encryption Keys into a New Keystore in United Mode	8-16
		About Moving TDE Master Encryption Keys into a New Keystore	8-16

8.1	112	Moving a TDE Master Encryption Key into a New Keystore in United Mode	8-17
8.1.12		omatically Removing Inactive TDE Master Encryption Keys in United	
0 1 12	Mod		8-19
8.1.13		ating a Pluggable Database Keystore	8-19 8-20
8.2 Adm 8.2.1		ng Transparent Data Encryption in United Mode ng PDBs from One CDB to Another in United Mode	8-20
8.2.2		agging and Plugging a PDB with Encrypted Data in a CDB in United Mode	8-21
	2.2.1	Unplugging a PDB That Has Encrypted Data in United Mode	8-21
_	2.2.2	Plugging a PDB That has Encrypted Data in Onlied Mode Plugging a PDB That Has Encrypted Data into a CDB in United Mode	8-22
	2.2.3	Unplugging a PDB That Has Master Encryption Keys Stored in an	
		External Keystore in United Mode	8-23
8.2	2.2.4	Plugging a PDB That Has Master Encryption Keys Stored in an External Keystore in United Mode	8-24
8.2.3	Mana	aging Cloned PDBs with Encrypted Data in United Mode	8-24
8.2	2.3.1	About Managing Cloned PDBs That Have Encrypted Data in United Mode	8-25
8.2	2.3.2	Cloning a PDB with Encrypted Data in a CDB in United Mode	8-25
8.2	2.3.3	Remotely Clone an Encrypted PDB in United Mode	8-26
	2.3.4	Relocating an Encrypted PDB in United Mode	8-27
8.2			
8.2 8.2.4	How	Keystore Open and Close Operations Work in United Mode	8-28
8.2.4 8.2.5	Findi	ng the Keystore Status for All of the PDBs in United Mode	8-28 8-29
8.2.4 8.2.5 Adminis	Findi sterin		
8.2.4 8.2.5 Adminis	Findi sterin inisteri	ng the Keystore Status for All of the PDBs in United Mode	8-29
8.2.4 8.2.5 Adminis 9.1 Adm 9.1.1	Findi sterin inisteri	ng the Keystore Status for All of the PDBs in United Mode g Isolated Mode ng Keystores and TDE Master Encryption Keys in Isolated Mode	8-29 9-1
8.2.4 8.2.5 Adminis 9.1 Adm 9.1.1 9.1	Findi sterin inisteri Chan	ng the Keystore Status for All of the PDBs in United Mode g Isolated Mode ng Keystores and TDE Master Encryption Keys in Isolated Mode nging the Keystore Password in Isolated Mode Changing the Password-Protected TDE Wallet Password in Isolated	9-1 9-2
8.2.4 8.2.5 Adminis 9.1 Adm 9.1.1 9.1	Findi sterin inisteri Chan 1.1	ng the Keystore Status for All of the PDBs in United Mode g Isolated Mode ng Keystores and TDE Master Encryption Keys in Isolated Mode nging the Keystore Password in Isolated Mode Changing the Password-Protected TDE Wallet Password in Isolated Mode	9-1 9-2 9-3
8.2.4 8.2.5 Adminis 9.1 Adm 9.1.1 9.1	Findi sterin inisteri Chan 1.1.1 1.1.2 Back	ng the Keystore Status for All of the PDBs in United Mode g Isolated Mode ng Keystores and TDE Master Encryption Keys in Isolated Mode nging the Keystore Password in Isolated Mode Changing the Password-Protected TDE Wallet Password in Isolated Mode Changing the Password of an External Keystore in Isolated Mode	9-1 9-2 9-3 9-2
8.2.4 8.2.5 Adminis 9.1 Adm 9.1.1 9.1 9.1 9.1.2 9.1.3	Findi sterin inisteri Chan 1.1.1 1.1.2 Back	ng the Keystore Status for All of the PDBs in United Mode g Isolated Mode ng Keystores and TDE Master Encryption Keys in Isolated Mode nging the Keystore Password in Isolated Mode Changing the Password-Protected TDE Wallet Password in Isolated Mode Changing the Password of an External Keystore in Isolated Mode ing Up a Password-Protected TDE Wallet in Isolated Mode	9-1 9-2 9-3 9-4
8.2.4 8.2.5 Adminis 9.1 Adm 9.1.1 9.1 9.1 9.1.2 9.1.3 9.1	Findi sterin inisteri Chan 1.1 1.2 Back Merg	ng the Keystore Status for All of the PDBs in United Mode g Isolated Mode ng Keystores and TDE Master Encryption Keys in Isolated Mode aging the Keystore Password in Isolated Mode Changing the Password-Protected TDE Wallet Password in Isolated Mode Changing the Password of an External Keystore in Isolated Mode ing Up a Password-Protected TDE Wallet in Isolated Mode ing TDE Wallets in Isolated Mode	9-1 9-2 9-3 9-4 9-2 9-5
8.2.4 8.2.5 Adminis 9.1 Adm 9.1.1 9.1 9.1 9.1.2 9.1.3 9.1	inisterin Chan 1.1 Back Merg 3.1	g Isolated Mode Ing Keystores and TDE Master Encryption Keys in Isolated Mode Ing Keystores and TDE Master Encryption Keys in Isolated Mode Inging the Keystore Password in Isolated Mode Changing the Password-Protected TDE Wallet Password in Isolated Mode Changing the Password of an External Keystore in Isolated Mode Ing Up a Password-Protected TDE Wallet in Isolated Mode Ing TDE Wallets in Isolated Mode Merging One TDE Wallet into an Existing TDE Wallet in Isolated Mode	9-1 9-2 9-3 9-4 9-4 9-6
8.2.4 8.2.5 Adminis 9.1 Adm 9.1.1 9.1 9.1.2 9.1.3 9.1 9.1 9.1.4	inisterin Chan 1.1 Back Merg 3.1	ng Isolated Mode Ing Keystores and TDE Master Encryption Keys in Isolated Mode Ing Keystores and TDE Master Encryption Keys in Isolated Mode Inging the Keystore Password in Isolated Mode Inging the Password-Protected TDE Wallet Password in Isolated Inging the Password of an External Keystore in Isolated Mode Inging the Password-Protected TDE Wallet in Isolated Mode Inging De Vallets in Isolated Mode Inging One TDE Wallet into an Existing TDE Wallet in Isolated Mode Inging Two TDE Wallets into a Third New TDE Wallet in Isolated Mode	9-1 9-2 9-3 9-2 9-2 9-5 9-6
8.2.4 8.2.5 Adminis 9.1 Adm 9.1.1 9.1 9.1.2 9.1.3 9.1 9.1.4 9.1	inisterin Chan 1.1.1 Back Merg 1.3.1 L.3.2 Closi	ng Isolated Mode Ing Keystores and TDE Master Encryption Keys in Isolated Mode Ing Keystores and TDE Master Encryption Keys in Isolated Mode Inging the Keystore Password in Isolated Mode Changing the Password-Protected TDE Wallet Password in Isolated Mode Changing the Password of an External Keystore in Isolated Mode Ing Up a Password-Protected TDE Wallet in Isolated Mode Ing TDE Wallets in Isolated Mode Merging One TDE Wallet into an Existing TDE Wallet in Isolated Mode Merging Two TDE Wallets into a Third New TDE Wallet in Isolated Mode Ing Keystores in Isolated Mode	9-1 9-2 9-3 9-4 9-4 9-6 9-6 9-6
8.2.4 8.2.5 Adminis 9.1 Adm 9.1.1 9.1 9.1.2 9.1.3 9.1 9.1.4 9.1	Eterin inisterin Chan 1.1.1 1.1.2 Back Merg 1.3.1 1.3.2 Closi 1.4.1 1.4.2	g Isolated Mode Ing Keystores and TDE Master Encryption Keys in Isolated Mode Inging the Keystore Password in Isolated Mode Inging the Password-Protected TDE Wallet Password in Isolated Inging the Password-Protected TDE Wallet Password in Isolated Inging the Password of an External Keystore in Isolated Inging the Password of an External Keystore in Isolated Mode Inging Up a Password-Protected TDE Wallet in Isolated Mode Inging TDE Wallets in Isolated Mode Inging One TDE Wallet into an Existing TDE Wallet in Isolated Mode Inging Two TDE Wallets into a Third New TDE Wallet in Isolated Mode Inging Two TDE Wallets in Isolated Mode Inging Two TDE Wallets into a Third New TDE Wallet in Isolated Mode Inging Two TDE Wallet in Isolated Mode Inging TDE Wallet in Isolated Mode	9-1 9-2 9-3 9-4 9-5 9-6 9-6 9-7
8.2.4 8.2.5 Adminis 9.1 Adm 9.1.1 9.1 9.1.2 9.1.3 9.1 9.1 9.1.4 9.1 9.1	inisterin Chan L.1.1 Back Merg L.3.1 L.3.2 Closi L.4.1 L.4.2 Crea	g Isolated Mode Ing Keystores and TDE Master Encryption Keys in Isolated Mode Ing Keystores and TDE Master Encryption Keys in Isolated Mode Inging the Keystore Password in Isolated Mode Inging the Password-Protected TDE Wallet Password in Isolated Inging the Password of an External Keystore in Isolated Mode Ing Up a Password-Protected TDE Wallet in Isolated Mode Ing TDE Wallets in Isolated Mode Ing TDE Wallets in Isolated Mode Ing TDE Wallets into an Existing TDE Wallet in Isolated Mode Ing Keystores in Isolated Mode Ing Keystores in Isolated Mode Ing Closing a TDE Wallet in Isolated Mode Ing Closing an External Keystore in Isolated Mode Ing Closing an External Keystore in Isolated Mode	9-1 9-2 9-3 9-4 9-5 9-6 9-6 9-7 9-8
8.2.4 8.2.5 Adminis 9.1 Adm 9.1.1 9.1 9.1.2 9.1.3 9.1 9.1.4 9.1 9.1 9.1.5	inisterin Chan .1.1.2 Back Merg .3.1 .3.2 Closi .4.1 .4.2 Crea Crea	ng the Keystore Status for All of the PDBs in United Mode g Isolated Mode ng Keystores and TDE Master Encryption Keys in Isolated Mode nging the Keystore Password in Isolated Mode Changing the Password-Protected TDE Wallet Password in Isolated Mode Changing the Password of an External Keystore in Isolated Mode ing Up a Password-Protected TDE Wallet in Isolated Mode ing TDE Wallets in Isolated Mode Merging One TDE Wallet into an Existing TDE Wallet in Isolated Mode Merging Two TDE Wallets into a Third New TDE Wallet in Isolated Mode Closing a TDE Wallet in Isolated Mode Closing an External Keystore in Isolated Mode ting a User-Defined TDE Master Encryption Key in Isolated Mode	9-1 9-2 9-3 9-4 9-4 9-6 9-6 9-7 9-8
8.2.4 8.2.5 Adminis 9.1 Adm 9.1.1 9.1 9.1.2 9.1.3 9.1 9.1.4 9.1 9.1.4 9.1 9.1.5 9.1.6	inisterin Chan L.1.1 L.1.2 Back Merg L.3.1 L.3.2 Closi L.4.1 L.4.2 Crea Active	Ing the Keystore Status for All of the PDBs in United Mode Ing Isolated Mode Ing Keystores and TDE Master Encryption Keys in Isolated Mode Inging the Keystore Password in Isolated Mode Inging the Password-Protected TDE Wallet Password in Isolated Inging the Password of an External Keystore in Isolated Mode Ing Up a Password-Protected TDE Wallet in Isolated Mode Ing TDE Wallets in Isolated Mode Ing TDE Wallets in Isolated Mode Ing TDE Wallet into an Existing TDE Wallet in Isolated Mode Ing Keystores in Isolated Mode Ing Keystores in Isolated Mode Ing Keystores in Isolated Mode Ing Closing a TDE Wallet in Isolated Mode Ing Isolated Mode Ing Isolated Mode Isolated TDE Master Encryption Key in Isolated Mode Iting a TDE Master Encryption Key for Later Use in Isolated Mode	9-1 9-2 9-3 9-2 9-5 9-6 9-6 9-7 9-8 9-9 9-9
8.2.4 8.2.5 Adminis 9.1 Adm 9.1.1 9.1 9.1.2 9.1.3 9.1 9.1.4 9.1 9.1.5 9.1.6 9.1.7	inisterin Chan .1.1 .1.2 Back Merg .3.1 .3.2 Closi .4.1 .4.2 Crea Crea Active Reke	Ing the Keystore Status for All of the PDBs in United Mode Ing Isolated Mode Ing Keystores and TDE Master Encryption Keys in Isolated Mode Inging the Keystore Password in Isolated Mode Changing the Password-Protected TDE Wallet Password in Isolated Mode Changing the Password of an External Keystore in Isolated Mode Ing Up a Password-Protected TDE Wallet in Isolated Mode Ing TDE Wallets in Isolated Mode Merging One TDE Wallet into an Existing TDE Wallet in Isolated Mode Merging Two TDE Wallets into a Third New TDE Wallet in Isolated Mode Ing Keystores in Isolated Mode Closing a TDE Wallet in Isolated Mode Closing an External Keystore in Isolated Mode Iting a User-Defined TDE Master Encryption Key in Isolated Mode Iting a TDE Master Encryption Key for Later Use in Isolated Mode Iting a TDE Master Encryption Key in Isolated Mode	9-1 9-2 9-3 9-4 9-5 9-6 9-6 9-7 9-8 9-9 9-11

	9.1.11	Expo	orting and importing the TDE Master Encryption Key in Isolated Mode	9-16
	9.1.1	L1.1	Exporting a TDE Master Encryption Key in Isolated Mode	9-16
	9.1.1	L1.2	Importing a TDE Master Encryption Key in Isolated Mode	9-17
	9.1.12	Stor	ing Oracle Database Secrets in Isolated Mode	9-18
	9.1.1	L2.1	About Storing Oracle Database Secrets in a Keystore in Isolated Mode	9-18
	9.1.1	L2.2	Storing Oracle Database Secrets in a TDE Wallet in Isolated Mode	9-19
	9.1.1	L2.3	Example: Adding an Oracle Key Vault Password to a TDE Wallet	9-20
	9.1.1	L2.4	Example: Changing an Oracle Key Vault Password Stored as a Secret in a TDE Wallet	9-20
	9.1.1	L2.5	Example: Deleting an Oracle Key Vault Password Stored as a Secret in a TDE Wallet	9-21
	9.1.1	L2.6	Storing Oracle Database Secrets in an External Keystore in Isolated Mode	9-21
	9.1.1	L2.7	Example: Adding an Oracle Database Secret to an External Keystore	9-22
	9.1.1	L2.8	Example: Changing an Oracle Database Secret in an External Keystore	9-23
	9.1.1	L2.9	Example: Deleting an Oracle Database Secret in an External Keystore	9-23
	9.1.13	Stor	ing Oracle GoldenGate Secrets in a Keystore in Isolated Mode	9-23
	9.1.1	L3.1	About Storing Oracle GoldenGate Secrets in Keystores in Isolated Mode	9-23
	9.1.1	L3.2	Oracle GoldenGate Extract Classic Capture Mode TDE Requirements	9-24
	9.1.1	L3.3	Configuring Keystore Support for Oracle GoldenGate	9-24
	9.1.14	Migr	rating Keystores in Isolated Mode	9-27
	9.1.1	L4.1	Reverse Migrating an Isolated PDB from Oracle Key Vault to a TDE Wallet	9-28
	9.1.1	L4.2	Migrating from an External Keystore to a Password-Protected TDE Wallet in Isolated Mode	9-29
	9.1.15	Unit	ing a Pluggable Database Keystore	9-30
	9.1.16	Crea	ating a Keystore When the PDB Is Closed	9-31
	9.1.1	L6.1	About Creating a Keystore When the PDB Is Closed	9-31
	9.1.1	L6.2	Reverting a Keystore Creation Operation When a PDB Is Closed	9-33
9.2	Admin	isteri	ng Transparent Data Encryption in Isolated Mode	9-33
	9.2.1	Cloni	ng or Relocating Encrypted PDBs in Isolated Mode	9-34
		Jnplu Mode	ugging and Plugging a PDB with Encrypted Data in a CDB in Isolated	9-34
	9.2.2	2.1	Unplugging a PDB That Has Encrypted Data in Isolated Mode	9-35
	9.2.2	2.2	Plugging a PDB That Has Encrypted Data into a CDB in Isolated Mode	9-35
	9.2.2	2.3	Unplugging a PDB That Has Master Encryption Keys Stored in an External Keystore in Isolated Mode	9-36
	9.2.2	2.4	Plugging a PDB That Has Master Keys Stored in an External Keystore in Isolated Mode	9-36
	9.2.3	Cloni	ng a PDB with Encrypted Data in a CDB in Isolated Mode	9-37
	9.2.4 F	Remo	otely Cloning an Encrypted PDB in Isolated Mode	9-38
	9.2.5 F	Reloc	cating an Encrypted PDB in Isolated Mode	9-39

9.2.7 Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode 9.2.7.1 About Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode	9-41 9-42
	0.42
Isolated Mode	9-42
9.2.7.2 Exporting or Importing a Master Encryption Key for a PDB in Isolated Mode	9-43
9.2.7.3 Example: Exporting a Master Encryption Key from a PDB in Isolated Mode	9-43
9.2.7.4 Example: Importing a Master Encryption Key into a PDB in Isolated Mode	9-43
General Considerations of Using Transparent Data Encryption	
10.1 Migrating Encrypted TDE Columns or Tablespaces after a Database Upgrade from Release 11g	10-1
10.2 Compression and Data Deduplication of Encrypted Data	10-3
10.3 Security Considerations for Transparent Data Encryption	10-4
10.3.1 Transparent Data Encryption General Security Advice	10-4
10.3.2 Transparent Data Encryption Column Encryption-Specific Advice	10-4
10.3.3 Managing Security for Plaintext Fragments	10-5
10.4 Performance and Storage Overhead of Transparent Data Encryption	10-5
10.4.1 Performance Overhead of Transparent Data Encryption	10-5
10.4.2 Storage Overhead of Transparent Data Encryption	10-6
10.5 Modifying Your Applications for Use with Transparent Data Encryption	10-7
10.6 How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT	10-7
10.7 Data Loads from External Files to Tables with Encrypted Columns	10-10
10.8 Transparent Data Encryption and Database Close Operations	10-11
Using Transparent Data Encryption with Other Oracle Features	
11.1 How Transparent Data Encryption Works with Export and Import Operations	11-1
11.1.1 About Exporting and Importing Encrypted Data	11-2
11.1.2 Exporting and Importing Tables with Encrypted Columns	11-2
11.1.3 Using Oracle Data Pump to Encrypt Entire Dump Sets	11-3
11.1.4 Using Oracle Data Pump with Encrypted Data Dictionary Data	11-4
11.2 How Transparent Data Encryption Works with Oracle Data Guard	11-5
11.2.1 About Using Transparent Data Encryption with Oracle Data Guard	11-5
11.2.2 Encryption of Tablespaces in an Oracle Data Guard Environment	11-6
11.2.2.1 About the Encryption of Tablespaces in an Oracle Data Guard Environment	11-6
11.2.2.2 Configuring the Encryption of Tablespaces in an Oracle Data Guard Environment	11-8
11.2.2.3 Encrypting an Existing Tablespace in Oracle Data Guard with Online Conversion	11-9

	11.2.3	Configuring TDE and Oracle Key Vault in an Oracle Data Guard Environment	11-12
	11.2.4	Configuring TDE Wallet-Based Transparent Data Encryption in Oracle Data Guard	11-20
	11.2.5	Migrating a TDE Wallet in an Oracle Data Guard Environment to Oracle Key Vault	11-26
	11.2.6	Enabling a PDB to Have an Isolated Keystore in an Oracle Data Guard Environment	11-32
	11.2.7	Uncoupling the Standby Database from the Primary Database Online Encryption Process	11-33
	11.3 How	Transparent Data Encryption Works with Oracle Real Application Clusters	11-33
	11.3.1	About Using Transparent Data Encryption with Oracle Real Application Clusters	11-34
	11.3.2	Configuring TDE in Oracle Real Application Clusters for Oracle Key Vault	11-35
	11.4 How	Transparent Data Encryption Works with SecureFiles	11-41
	11.4.1	About Transparent Data Encryption and SecureFiles	11-41
	11.4.2	Example: Creating a SecureFiles LOB with a Specific Encryption Algorithm	11-41
	11.4.3	Example: Creating a SecureFiles LOB with a Column Password Specified	11-41
	11.5 How	Transparent Data Encryption Works with Oracle Call Interface	11-42
	11.6 How	Transparent Data Encryption Works with Editions	11-42
	11.7 Conf	figuring Transparent Data Encryption to Work in a Multidatabase Environment	11-42
12	Frequen	tly Asked Questions About Transparent Data Encryption	
	12.1 Tran	sparency Questions About Transparent Data Encryption	12-1
	12.2 Perf	ormance Questions About Transparent Data Encryption	12-4
Part	ll Usin	g Oracle Data Redaction	
13	Introduc	tion to Oracle Data Redaction	
	13.1 Wha	at Is Oracle Data Redaction?	13-1
	13.2 Whe	en to Use Oracle Data Redaction	13-2
	13.3 Ben	efits of Using Oracle Data Redaction	13-2
	13.4 Exa	mple Use Cases for Oracle Data Redaction	13-3
	13.4.1	Oracle Data Redaction for Sensitive Data in Read-Only Static Pages	13-3
	13.4.2	Oracle Data Redaction for Preventing Data Exposure by Management Tools	13-3
	13.4.3	Oracle Data Redaction to Prevent Disclosure of Data from Offline Analytics	13-4
	13.4.4	Oracle Data Redaction with Ad Hoc Database Queries Considerations	13-4
		•	13-4 13-4

14 Oracle Data Redaction Features and Capabilities

14.1	etting Started with Oracle Data Redaction		14-1
14.2 F	ull Data Redaction to Redact All Data		14-2
14.3 F	artial Data Redaction to Redact Portions of Data		14-3
14.4 F	egular Expressions to Redact Patterns of Data		14-4
14.5 F	edaction Using Null Values		14-5
14.6 F	andom Data Redaction to Generate Random Values		14-5
14.7	omparison of Full, Partial, and Random Redaction Based	d on Data Types	14-6
14.7	1 Oracle Built-in Data Types Redaction Capabilities		14-7
14.7	2 ANSI Data Types Redaction Capabilities		14-7
14.7	3 Built-in and ANSI Data Types Full Redaction Capabi	lities	14-8
14.7	4 User-Defined Data Types or Oracle Supplied Types	Redaction Capabilities	14-10
14.8 N	o Redaction for Testing Purposes		14-10
14.9	entral Management of Named Data Redaction Policy Ex	pressions	14-10
	uring Oracle Data Redaction Policies bout Oracle Data Redaction Policies		15-2
	rivileges for Managing Oracle Data Redaction Policies		15-3
	lanning an Oracle Data Redaction Policy		15-4
	eneral Syntax of the DBMS_REDACT.ADD_POLICY Pro	ocedure	15-5
	sing Expressions to Define Conditions for Data Redactio		15-7
15.5			15-8
15.5	·		15-8
	.5.5.2.1 Expressions Using Namespace Functions		15-9
	.5.5.2.2 Expressions Using the SUBSTR Function		15-9
	.5.5.2.3 Expressions Using Length of Character String	Functions	15-10
	.5.5.2.4 Expressions Using Oracle Application Express	Functions	15-10
	.5.5.2.5 Expressions Using Oracle Label Security Fund	ctions	15-12
15.5	3 Applying the Redaction Policy Based on User Enviro	onment	15-12
15.5	4 Applying the Redaction Policy Based on Database F	Roles	15-12
15.5	5 Applying the Redaction Policy Based on Oracle Lab Dominance	el Security Label	15-13
15.5	6 Applying the Redaction Policy Based on Application	Express Session States	15-13
15.5	7 Applying the Redaction Policy to All Users		15-14
15.6 C	reating and Managing Multiple Named Policy Expression	IS	15-14
15.6	1 About Data Redaction Policy Expressions to Define	Conditions	15-15
15.6	2 Creating and Applying a Named Data Redaction Pol	icy Expression	15-16
15.6	3 Updating a Named Data Redaction Policy Expression	n	15-17
15.6	4 Dropping a Named Data Redaction Expression Police	су	15-18
15.6	5 Tutorial: Creating and Sharing a Named Data Redac	ction Policy Expression	15-18

	15.6.	5.1	Step 1: Create Users for This Tutorial	15-19
	15.6.	5.2	Step 2: Create an Oracle Data Redaction Policy	15-19
	15.6.	5.3	Step 3: Test the Oracle Data Redaction Policy	15-20
	15.6.	5.4	Step 4: Create and Apply a Policy Expression to the Redacted Table	
			Columns	15-21
	15.6.	5.5	Step 5: Test the Data Redaction Policy Expression	15-22
	15.6.	5.6	Step 6: Modify the Data Redaction Policy Expression	15-22
	15.6.	5.7	Step 7: Test the Modified Policy Expression	15-22
	15.6.	5.8	Step 8: Remove the Components of This Tutorial	15-23
15.7	Creati	ng a	Full Redaction Policy and Altering the Full Redaction Value	15-24
15	5.7.1	Crea	ting a Full Redaction Policy	15-25
	15.7.	1.1	About Creating Full Data Redaction Policies	15-25
	15.7.	1.2	Syntax for Creating a Full Redaction Policy	15-25
	15.7.	1.3	Example: Full Redaction Policy	15-26
	15.7.	1.4	Example: Fully Redacted Character Values	15-26
15	5.7.2	Alter	ing the Default Full Data Redaction Value	15-27
	15.7.2	2.1	About Altering the Default Full Data Redaction Value	15-27
	15.7.2	2.2	Syntax for the	
			DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES Procedure	15-28
	15.7.2	2.3	Modifying the Default Full Data Redaction Value	15-28
15.8	Creati	ng a	Nullify Redaction Policy	15-29
15	5.8.1	Abou	ut Creating a Policy That Returns Null Values	15-29
15	5.8.2	Synt	ax for Creating a Nullify Redaction Policy	15-29
15	5.8.3	Exar	nple: Redaction Policy That Returns Null Values	15-30
15.9	Creati	ng a	Partial Redaction Policy	15-31
15	5.9.1	Abou	ut Creating Partial Redaction Policies	15-31
15	5.9.2	Synt	ax for Creating a Partial Redaction Policy	15-32
15	5.9.3	Crea	ting Partial Redaction Policies Using Fixed Character Formats	15-32
	15.9.3	3.1	Settings for Fixed Character Formats	15-33
	15.9.3	3.2	Example: Partial Redaction Policy Using a Fixed Character Format	15-35
15	5.9.4	Crea	ting Partial Redaction Policies Using Character Data Types	15-35
	15.9.	4.1	Settings for Character Data Types	15-36
	15.9.4	4.2	Example: Partial Redaction Policy Using a Character Data Type	15-37
15	5.9.5	Crea	ting Partial Redaction Policies Using Number Data Types	15-37
	15.9.	5.1	Settings for Number Data Types	15-37
	15.9.	5.2	Example: Partial Redaction Policy Using a Number Data Type	15-38
15	5.9.6	Crea	ting Partial Redaction Policies Using Date-Time Data Types	15-39
	15.9.0	6.1	Settings for Date-Time Data Types	15-39
	15.9.0	6.2	Example: Partial Redaction Policy Using Date-Time Data Type	15-39
15.10	Crea	ting	a Regular Expression-Based Redaction Policy	15-40
15	.10.1	Abo	out Creating Regular Expression-Based Redaction Policies	15-40
15	.10.2	Syr	ntax for Creating a Regular Expression-Based Redaction Policy	15-41

	15	.10.3	Regula	r Expression-Based Redaction Policies Using Formats	15-43
		15.10	.3.1 F	Regular Expression Formats	15-43
		15.10	.3.2 E	Example: Regular Expression Redaction Policy Using Formats	15-46
	15	.10.4	Custon	n Regular Expression Redaction Policies	15-47
		15.10	.4.1	Settings for Custom Regular Expressions	15-47
		15.10	.4.2 E	Example: Custom Regular Expression Redaction Policy	15-47
	15.11	Crea	ting a Ra	andom Redaction Policy	15-48
	15	.11.1	Syntax	for Creating a Random Redaction Policy	15-48
	15	.11.2	Examp	le: Random Redaction Policy	15-49
	15.12	Crea	ting a Po	olicy That Uses No Redaction	15-49
	15	.12.1	Syntax	for Creating a Policy with No Redaction	15-50
	15	.12.2	Examp	le: Performing No Redaction	15-50
	15.13	Exer	nption of	f Users from Oracle Data Redaction Policies	15-51
	15.14	Alter	ing an O	Pracle Data Redaction Policy	15-51
	15	.14.1	About A	Altering Oracle Data Redaction Policies	15-52
	15	.14.2	Syntax	for the DBMS_REDACT.ALTER_POLICY Procedure	15-52
	15	.14.3	Parame	eters Required for DBMS_REDACT.ALTER_POLICY Actions	15-53
	15	.14.4	Tutoria	l: Altering an Oracle Data Redaction Policy	15-54
	15.15	Red	acting M	ultiple Columns	15-57
	15	.15.1	Adding	Columns to a Data Redaction Policy for a Single Table or View	15-58
	15	.15.2	Examp	le: Redacting Multiple Columns	15-58
	15.16	Disa	oling and	d Enabling an Oracle Data Redaction Policy	15-58
	15	.16.1	Disabli	ng an Oracle Data Redaction Policy	15-59
	15	.16.2	Enablir	ng an Oracle Data Redaction Policy	15-59
	15.17	Drop	ping an	Oracle Data Redaction Policy	15-60
	15.18	Tuto	ial: SQL	Expressions to Build Reports with Redacted Values	15-61
	15.19	Usin	g Trace	Files to Troubleshoot Oracle Data Redaction Policies	15-62
	15.20	Orac	le Data	Redaction Policy Data Dictionary Views	15-63
16	Mana	aging	Orac	ele Data Redaction Policies in Oracle Enterprise Ma	nager
LO				· · · · · · · · · · · · · · · · · · ·	
	16.1		_	Dracle Data Redaction in Oracle Enterprise Manager	16-1
	16.2			Redaction Workflow	16-2
	16.3			of Sensitive Column Types in Enterprise Manager	16-2
	16.4			cle Data Redaction Formats Using Enterprise Manager	16-4
			About M	lanaging Oracle Data Redaction Formats Using Enterprise Manager	16-5
	16	.4.2	Creating	g a Custom Oracle Data Redaction Format Using Enterprise Manager	16-5
		.4.3	Editing a	a Custom Oracle Data Redaction Format Using Enterprise Manager	16-7
			Viewing	Oracle Data Redaction Formats Using Enterprise Manager	16-8
	16	.4.5	Deleting	a Custom Oracle Data Redaction Format Using Enterprise Manager	16-9
	16.5	Mana	ging Ora	cle Data Redaction Policies Using Enterprise Manager	16-10

16.	.5.1 ADOU	it managing Oracle Data Redaction Policies Using Enterprise manager	16-10
16.	.5.2 Crea	ting an Oracle Data Redaction Policy Using Enterprise Manager	16-11
16.	.5.3 Editir	ng an Oracle Data Redaction Policy Using Enterprise Manager	16-14
16.	.5.4 View	ing Oracle Data Redaction Policy Details Using Enterprise Manager	16-15
16.	.5.5 Enab	ing or Disabling an Oracle Data Redaction Policy in Enterprise Manager	16-16
16.	.5.6 Dele	ting an Oracle Data Redaction Policy Using Enterprise Manager	16-17
16.6	Managing I	Named Data Redaction Policy Expressions Using Enterprise Manager	16-17
16.	.6.1 Abou	t Named Data Redaction Policy Expressions in Enterprise Manager	16-18
16.	.6.2 Crea	ting a Named Data Redaction Policy Expression in Enterprise Manager	16-18
16.	.6.3 Editir	ng a Named Data Redaction Policy Expression in Enterprise Manager	16-19
16.	.6.4 View	ing Named Data Redaction Policy Expressions in Enterprise Manager	16-20
16.	.6.5 Dele	ting a Named Data Redaction Policy Expression in Enterprise Manager	16-21
Usin	g Oracle	Data Redaction with Oracle Database Features	
17.1	Oracle Dat	a Redaction General Usage Guidelines	17-2
17.2	Oracle Dat	a Redaction and DML and DDL Operations	17-4
17.3	Oracle Dat Clause	a Redaction and Nested Functions, Inline Views, and the WHERE	17-5
17.4	Oracle Dat Policies	a Redaction and Queries on Columns Protected by Data Redaction	17-5
17.5	Oracle Dat	a Redaction and Database Links	17-6
17.6	Oracle Dat	a Redaction and Aggregate Functions	17-6
17.7	Oracle Dat	a Redaction and Object Types	17-6
17.8	Oracle Dat	a Redaction and XML Generation	17-6
17.9	Oracle Dat	a Redaction and Editions	17-7
17.10	Oracle Da	ata Redaction and Oracle Data Warehouse Query Rewrite Operation	17-7
17.11	Oracle Da	ata Redaction and Oracle Virtual Private Database	17-7
17.12	Oracle Da	ata Redaction and Oracle Database Real Application Security	17-8
17.13	Oracle Da	ata Redaction and Oracle Database Vault	17-8
17.14	Oracle Da	ata Redaction and Oracle Data Pump	17-8
17.	.14.1 Ora	cle Data Pump Security Model for Oracle Data Redaction	17-8
17.	.14.2 Exp	ort of Objects That Have Oracle Data Redaction Policies Defined	17-9
	17.14.2.1	Finding Object Types Used by Oracle Data Pump	17-9
	17.14.2.2	Exporting Only the Data Dictionary Metadata Related to Data Redaction Policies	17-10
	17.14.2.3	Importing Only the Data Dictionary Metadata Using the INCLUDE Parameter in IMPDP	17-10
17.	.14.3 Exp	ort of Data Using the EXPDP Utility access_method Parameter	17-11
	·		

18 Security Considerations for Oracle Data Redaction

18.1	Oracle Data Redaction General Security Guidelines	18-1
18.2	Restriction of Administrative Access to Oracle Data Redaction Policies	18-2
18.3	How Oracle Data Redaction Affects the SYS, SYSTEM, and Default Schemas	18-2
18.4	Policy Expressions That Use SYS_CONTEXT Attributes	18-3
18.5	Oracle Data Redaction Policies on Materialized Views	18-3
18.6	REDACTION_COLUMNS Data Dictionary View Behavior When a View Is Invalid	18-4
18.7	Dropped Oracle Data Redaction Policies When the Recycle Bin Is Enabled	18-4

Glossary

Index

Preface

Welcome to *Oracle Database Advanced Security Guide*. This guide describes how to implement, configure, and administer Transparent Data Encryption (TDE) and Oracle Data Redaction.

- Audience
- · Documentation Accessibility
- Diversity and Inclusion
- Related Documents
- Conventions

Audience

Oracle Database Advanced Security Guide is intended for users and systems professionals involved with the implementation, configuration, and administration of Oracle Advanced Security including:

- Implementation consultants
- System administrators
- Security administrators
- Database administrators (DBAs)

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a diverse workforce that increases thought leadership and innovation. As part of our initiative to build a more inclusive culture that positively impacts our employees, customers, and partners, we are working to remove insensitive terms from our products and documentation. We are also mindful of the necessity to maintain compatibility with our customers' existing technologies and the need to ensure continuity of service as Oracle's offerings and industry

standards evolve. Because of these technical constraints, our effort to remove insensitive terms is ongoing and will take time and external cooperation.

Related Documents

Before you configure Oracle Advanced Security features, you should be familiar with the following guides:

- Oracle Database Administrator's Guide
- Oracle Database Security Guide
- Oracle Database SQL Language Reference
- Oracle Database Reference
- Oracle Database PL/SQL Packages and Types Reference
- Oracle Multitenant Administrator's Guide

Many books in the documentation set use the sample schemas of the default database. Refer to *Oracle Database Sample Schemas* for information about how these schemas were created and how you can use them.

Oracle Technical Services

To download the product data sheet, frequently asked questions, links to the latest product documentation, product download, and other collateral, visit Oracle Technical Resources (formerly Oracle Technology Network). You must register online before using Oracle Technical Services. Registration is free and can be done at

https://www.oracle.com/technical-resources/

My Oracle Support

You can find information about security patches, certifications, and the support knowledge base by visiting My Oracle Support (formerly Oracle*MetaLink*) at

https://support.oracle.com

Conventions

The following text conventions are used in this document:

Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

Changes in This Release for Oracle Database Advanced Security Guide

This preface contains:

- Changes in Oracle Database Advanced Security 23ai
- Updates to Oracle Database Advanced Security 23ai

Changes in Oracle Database Advanced Security 23ai

Oracle Database Advanced Security Guide for Oracle Database 23ai has new security features.

- Changes for Encryption Algorithms and Modes
 Starting with Oracle Database 23ai, the default encryption algorithms and the encryption modes have changed.
- AES-XTS Encryption Mode Support for TDE Tablespace Encryption
 Starting with Oracle Database 23ai, Transparent Database Encryption (TDE) tablespace encryption supports Advanced Encryption Standard (AES) XTS (XEX-based mode with ciphertext stealing mode) in the CREATE TABLESPACE and ALTER TABLESPACE statements.
- Schema Privileges to Simplify Access Control in Oracle Data Redaction
 Starting with Oracle Database 23ai, Oracle Database supports schema privileges, which affects Oracle Data Redaction.
- BOOLEAN Data Type Supported in Oracle Data Redaction
 Starting with Oracle Database 23ai, Oracle Data Redaction supports the BOOLEAN data type.
- Oracle Data Guard Redo Decryption for Hybrid Disaster Recovery Configurations
 Available with Oracle Database 23ai, Oracle Data Guard enables you to decrypt redo
 operations in hybrid cloud disaster recovery configurations where the Cloud database is
 encrypted with TDE and the on-premises database is not.

Changes for Encryption Algorithms and Modes

Starting with Oracle Database 23ai, the default encryption algorithms and the encryption modes have changed.

Encryption algorithm changes:

- Encryption algorithm changes:
 - The default encryption algorithm for both TDE column encryption and TDE tablespace encryption is now AES256. The previous default for TDE column encryption was AES192. For TDE tablespace encryption, the default was AES128.

- The decryption libraries for the GOST and SEED algorithms are deprecated.
 New keys cannot use these algorithms. The encryption libraries for both of these libraries are desupported. The GOST decryption libraries are desupported on HP Itanium platforms.
- The column encryption mode is now Galois/Counter mode (GCM) instead of cipher block chaining (CBC), and in tablespace encryption, you can choose between the new "tweakable block ciphertext stealing (XTS)" operating mode or cipher feedback (CFB). XTS is the default.
- The Oracle Recovery Manager (Oracle RMAN) integrity check for column encryption keys now uses SHA512 instead of SHA1.
- The keys for Oracle RMAN and column keys are now derived from SHA512/AES for key generation. In previous releases, they used SHA-1/3DES as a pseudo-random function.

These enhancements enable your Oracle Database environment to use the latest, most secure algorithms and encryption modes.

Related Topics

Supported Encryption and Integrity Algorithms
 Oracle supports the AES, ARIA and DES algorithms.

AES-XTS Encryption Mode Support for TDE Tablespace Encryption

Starting with Oracle Database 23ai, Transparent Database Encryption (TDE) tablespace encryption supports Advanced Encryption Standard (AES) XTS (XEX-based mode with ciphertext stealing mode) in the CREATE TABLESPACE and ALTER TABLESPACE statements.

AES-XTS provides improved security and better performance, especially on platforms where TDE can take advantage of parallel processing and specialized instructions built into processor hardware.

Related Topics

Oracle Database SQL Language Reference

Schema Privileges to Simplify Access Control in Oracle Data Redaction

Starting with Oracle Database 23ai, Oracle Database supports schema privileges, which affects Oracle Data Redaction.

This enhancement is as follows:

- The ADMINISTER REDACTION POLICY privilege must be granted to users as either a system privilege or a schema privilege for using the DBMS_REDACT PL/SQL package and not CREATE TABLE OF CREATE ANY TABLE, which was required in Oracle Database 21c. This privilege is required in addition to the EXECUTE privilege on the DBMS_REDACT package for data redaction policies.
- The EXEMPT REDACTION POLICY privilege can be granted as either a system privilege or a schema privilege.

Related Topics

- Privileges for Managing Oracle Data Redaction Policies
 Because data redaction involves the protection of highly sensitive data, only trusted users should create Oracle Data Redaction policies.
- Oracle Database Security Guide

BOOLEAN Data Type Supported in Oracle Data Redaction

Starting with Oracle Database 23ai, Oracle Data Redaction supports the BOOLEAN data type.

The BOOLEAN data type is now an Oracle Database built-in data type.

As part of this enhancement, the <code>DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES</code> procedure has a new parameter, <code>boolean_val</code>, to support changing the default value for full redaction.

Related Topics

- Oracle Built-in Data Types Redaction Capabilities
 Oracle Data Redaction handles the Oracle built-in data types depending on the type of Data Redaction policies that are used.
- Syntax for the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES Procedure The DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure accommodates the standard supported Oracle Database data types.

Oracle Data Guard Redo Decryption for Hybrid Disaster Recovery Configurations

Available with Oracle Database 23ai, Oracle Data Guard enables you to decrypt redo operations in hybrid cloud disaster recovery configurations where the Cloud database is encrypted with TDE and the on-premises database is not.

To enable this feature, Oracle Database introduces the <code>TABLESPACE_ENCRYPTION</code> initialization parameter, which enables you to control the automatic encryption of tablespaces in both the primary and standby databases, for on-premises and Oracle Cloud Infrastructure (OCI) environments. For example, an on-premises database can be unencrypted and an OCI database can be encrypted.

Hybrid disaster recovery is often considered a quick-stepping stone to cloud adoption. By enabling the ability to quickly configure disaster recovery even in cases where on-premises databases might not already be encrypted with TDE, the steps required to configure hybrid disaster recovery environments are reduced while still ensuring that redo data is still encrypted during the transportation process.

Related Topics

- Encryption of Tablespaces in an Oracle Data Guard Environment
 You can control tablespace encryption in the primary and standby databases in an Oracle Data Guard environment.
- Hybrid Oracle Data Guard without Transparent Data Encryption (TDE) License

Updates to Oracle Database Advanced Security 23ai

Oracle Database Advanced Security Guide for Oracle Database 23ai as the following update.

New Parameter to Control the TDE Rekey Operations for Oracle Data Guard
You now can use the DB_RECOVERY_AUTO_REKEY initialization parameter for Oracle
Data Guard environments..

New Parameter to Control the TDE Rekey Operations for Oracle Data Guard

You now can use the <code>DB_RECOVERY_AUTO_REKEY</code> initialization parameter for Oracle Data Guard environments..

DB_RECOVERY_AUTO_REKEY controls whether an Oracle Data Guard standby database recovery operation automatically performs the corresponding tablespace rekey when it encounters a redo that says the primary database has performed a tablespace rekey operation.

This feature is useful for standby deployments with large tablespaces whose users must perform an online TDE conversion.

Related Topics

 Uncoupling the Standby Database from the Primary Database Online Encryption Process

You can use the <code>DB_RECOVERY_AUTO_REKEY</code> initialization parameter to control how Transparent Data Encryption (TDE) rekey operations are performed in an Oracle Data Guard environment.

1

Introduction to Oracle Advanced Security

Two features comprise Oracle Advanced Security: Transparent Data Encryption and Oracle Data Redaction.

- Transparent Data Encryption
 Transparent Data Encryption (TDE) transparently encrypts data at rest and is transparent to database users and applications.
- Oracle Data Redaction
 Data Redaction enables you to dynamically mask data as it is selected from the Oracle Database.

1.1 Transparent Data Encryption

Transparent Data Encryption (TDE) transparently encrypts data at rest and is transparent to database users and applications.

Use TDE to protect sensitive data from attacks that bypass the database and attempt to directly read the underlying database files. Examples of this type of attack might include ransomware (most ransomware also scrapes data from disk and infiltrates it for use in extortion attempts), lost, or stolen backup files, or direct access to the stored data using operating system tools like strings or cat. You can encrypt individual columns in a database table, or you can encrypt an entire tablespace. In almost all cases, tablespace encryption should be your first choice.

To use Transparent Data Encryption, you do not need to modify your applications. TDE enables your applications to continue working seamlessly as before. It automatically encrypts data when it is written to disk, and then automatically decrypts the data when your applications access it. Key management is built-in, eliminating the complex task of managing and securing encryption keys.

1.2 Oracle Data Redaction

Data Redaction enables you to dynamically mask data as it is selected from the Oracle Database.

Unlike the static data masking (see Oracle Data SafeOracle Data Safe or Oracle Data Masking and SubsettingOracle Data Masking and Subsetting for more information on this type of masking), Oracle Data Redaction does not actually change the stored data. It simply alters the presentation of that data at query time to prevent disclosure of sensitive information for those sessions that should not be able to view the actual data values, while still making the data available to authorized users under acceptable session conditions.

Data Redaction performs the redaction before the data is returned by the SQL query. Redaction is suited for production systems when you want to selectively obfuscate selected sensitive data for certain database users. While the data is being redacted, Oracle Database is able to process all of the data normally and to preserve the back-end referential integrity constraints. Data redaction can help you to comply with industry regulations such as Payment

Card Industry Data Security Standard (PCI DSS) and the Sarbanes-Oxley Act by minimizing exposure of sensitive data such as PII to unauthorized persons.

Part I

Using Transparent Data Encryption

Part I describes how to use Transparent Data Encryption.

Introduction to Transparent Data Encryption

Transparent data encryption enables you to encrypt database data files or selected columns of data. This helps you protect sensitive data contained in your database, such as credit card numbers or Social Security numbers.

Configuring United Mode

United mode enables you to create a common keystore for the CDB and the PDBs for which the keystore is in united mode.

Configuring Isolated Mode

Isolated mode enables you to create a keystore for each pluggable database (PDB).

Encrypting Columns in Tables

You can use Transparent Data Encryption to encrypt individual columns in database tables.

Encryption Conversions for Tablespaces and Databases

You can perform encryption operations on both offline and online tablespaces and databases.

Managing the Keystore and the Master Encryption Key

You can modify settings for the keystore and TDE master encryption key, and store Oracle Database and store Oracle GoldenGate secrets in a keystore.

Administering United Mode

Administering united mode means managing the keystores, master encryption keys, and general Transparent Database Encryption (TDE) functionality.

Administering Isolated Mode

Administering isolated mode means managing the keystores, master encryption keys, and general Transparent Database Encryption (TDE) functionality.

• General Considerations of Using Transparent Data Encryption

When you use Transparent Data Encryption, you should consider factors such as security, performance, and storage overheads.

• Using Transparent Data Encryption with Other Oracle Features

You can use Oracle Data Encryption with other Oracle features, such as Oracle Data Guard or Oracle Real Application Clusters.

Frequently Asked Questions About Transparent Data Encryption

Users frequently have questions about transparency and performance issues with Transparent Data Encryption.

Introduction to Transparent Data Encryption

Transparent data encryption enables you to encrypt database data files or selected columns of data. This helps you protect sensitive data contained in your database, such as credit card numbers or Social Security numbers.

- What Is Transparent Data Encryption?
 - Transparent Data Encryption (TDE) enables you to encrypt sensitive data that you store in tables and tablespaces. It also enables you to encrypt database backups.
- How Configuring Transparent Data Encryption Works
 To configure Transparent Data Encryption, you must perform a one-time setup before you create keystores and encrypt data.
- Benefits of Using Transparent Data Encryption
 Transparent Data Encryption (TDE) ensures that sensitive data is encrypted, helps address compliance requirements, and provides functionality that streamlines encryption operations.
- Who Can Configure Transparent Data Encryption?
 To configure Transparent Data Encryption (TDE), you must be granted either the SYSKM administrative privilege or the ADMINISTER KEY MANAGEMENT system privilege.
- Types and Components of Transparent Data Encryption
 Transparent Data Encryption can be applied to individual columns or entire tablespaces.
- Transparent Data Encryption in a Multitenant Environment
 In a multitenant environment, you can configure keystores for either the entire container database (CDB) or for individual pluggable databases (PDBs).
- Transparent Data Encryption Keystore Search Order
 The search order for the TDE keystore depends on how you have set either the instance initialization parameters, the sqlnet.ora parameters, or the environment variables.

2.1 What Is Transparent Data Encryption?

Transparent Data Encryption (TDE) enables you to encrypt sensitive data that you store in tables and tablespaces. It also enables you to encrypt database backups.

After the data is encrypted, this data is transparently decrypted for authorized users or applications when they access this data. TDE helps protect data stored on media (also called data at rest) in the event that the storage media or data file is stolen.

Oracle Database uses authentication, authorization, and auditing mechanisms to secure data in the database, but not in the operating system data files where data is stored. To protect these data files, Oracle Database provides Transparent Data Encryption (TDE). TDE encrypts sensitive data stored in data files. To prevent unauthorized decryption, TDE stores the encryption keys in a security module that is external to the database. This security module can be referred to as follows:

• **TDE wallets** are wallets used for TDE. They cannot contain other security artifacts such as certificates. In previous releases, they were called software keystores or just wallets.

- External keystores refer to Oracle Key Vault or Oracle Cloud Infrastructure (OCI) Key Management Service (KMS).
- Keystores is a generic term for both TDE wallets and external keystores.

You can configure Oracle Key Vault as part of the TDE implementation. This enables you to centrally manage keystores in your enterprise. For example, you can upload a TDE wallet to Oracle Key Vault, migrate the database to use Oracle Key Vault as the default keystore, and then share the contents of this keystore with other primary and standby Oracle Real Application Clusters (Oracle RAC) nodes of that database to streamline daily database administrative operations with encrypted databases.

Tranparent Data Encryption (TDE) public key infrastructure (PKI) keys are desupported with Oracle Database 23ai.

Related Topics

Oracle Key Vault Administrator's Guide

2.2 How Configuring Transparent Data Encryption Works

To configure Transparent Data Encryption, you must perform a one-time setup before you create keystores and encrypt data.

Before you can begin to encrypt data, you must perform a one-time configuration using the static WALLET_ROOT parameter and the dynamic TDE_CONFIGURATION parameter to designate the location and type of keystores that you plan to use. See *Oracle Database Reference* for details about the TDE CONFIGURATION parameter.

The WALLET_ROOT parameter specifies the keystore directory location. Before you set WALLET_ROOT, ensure that you have an existing directory that you can use to store keystores (for example, WALLET_ROOT can be set to the existing directory /etc/ORACLE/KEYSTORES/\${ORACLE SID}).

The TDE CONFIGURATION parameter specifies the type of keystore (TDE wallet or Oracle Key Vault). After you set the type of keystore using TDE CONFIGURATION, when you create the keystore, Oracle Database creates a directory within the WALLET ROOT location for the keystore type. For example, if you set TDE CONFIGURATION to FILE, then Oracle Database creates a TDE wallet in WALLET ROOT/tde. To use Oracle Key Vault, install the Oracle Key Vault client software into WALLET ROOT/okv and set TDE CONFIGURATION to OKV. An auto-open connection helps with automatically restarting databases (for example, primary and standby databases that switch roles (planned or unplanned)). Oracle Real Application Clusters (Oracle RAC) databases should also have an auto-open connection into Oracle Key Vault to not interfere with an automated Oracle RAC instance restart. To establish an auto-open Oracle Key Vault configuration, add the Oracle Key Vault password as a secret into a (local) autoopen wallet in WALLET ROOT/tde. The Oracle Key Vault password is the password that you created when you installed the Oracle Key Vault endpoint software. If you want to migrate from one keystore type to another, then you must first set TDE CONFIGURATION parameter to the keystore type that you want to use, and then use the ADMINISTER KEY

 ${\tt MANAGEMENT}$ statement to perform the migration. For example, you can migrate from a TDE wallet to Oracle Key Vault.

The KEYSTORE_MODE column of the V\$ENCRYPTION_WALLET dynamic view shows whether united mode or isolated mode has been configured. For example, from a PDB:

```
SELECT KEYSTORE_MODE FROM V@ENCRYPTION_WALLET;

KEYSTORE
-----
UNITED
```

From the root, you can find how all containers are configured:

```
SELECT KEYSTORE_MODE, CON_ID FROM V@ENCRYPTION_WALLET;

KEYSTORE CON_ID
-----
NONE 1
UNITED 2
UNITED 3
```


The configuration of TDE using the sqlnet.ora file is desupported. Upgrades of Oracle Database 19c and 21c databases to release 23ai will fail if the source databases do not have the WALLET ROOT and TDE CONFIGURATION parameters set.

Related Topics

Transparent Data Encryption Keystore Search Order The search order for the TDE keystore depends on how you have set either the instance initialization parameters, the sqlnet.ora parameters, or the environment variables.

2.3 Benefits of Using Transparent Data Encryption

Transparent Data Encryption (TDE) ensures that sensitive data is encrypted, helps address compliance requirements, and provides functionality that streamlines encryption operations.

Benefits are as follows:

- As a security administrator, you can be sure that sensitive data is encrypted and therefore safe in the event that the storage media or data file is stolen, or when an intruder tries to access the data files from the operating system, bypassing the access controls of the database.
- Using TDE helps you address security-related regulatory compliance issues.
- You do not need to create auxiliary tables, triggers, or views to decrypt data for the authorized user or application. Data from tables is transparently decrypted for the database user and application. An application that processes sensitive data can use TDE to provide strong data encryption with little or no change to the application.

- Data is transparently decrypted for database users and applications that access
 this data. Database users and applications do not need to be aware that the data
 they are accessing is stored in encrypted form.
- Using online or offline encryption of existing un-encrypted tablespaces enables you to implement Transparent Data Encryption with little or no downtime.
- You do not need to modify your applications to handle the encrypted data. The database manages the data encryption and decryption.
- Oracle Database automates TDE master encryption key and keystore management operations. The user or application does not need to manage TDE master encryption keys.

2.4 Who Can Configure Transparent Data Encryption?

To configure Transparent Data Encryption (TDE), you must be granted either the SYSKM administrative privilege or the ADMINISTER KEY MANAGEMENT system privilege.

A user can authenticate as a security administrator in two ways, which are quite different, and both authentication approaches allow the security administrator to issue the ADMINISTER KEY MANAGEMENT statement. To check if a user is allowed to perform a TDE operation, Oracle Database checks whether the user has the ADMINISTER KEY MANAGEMENT privilege or was authenticated using the SYSKM administrative privilege. Any ADMINISTER KEY MANAGEMENT statement will be allowed for the following users:

 A user who is granted the SYSKM administrative privilege (this grant is recorded in the password file) and issues the ADMINISTER KEY MANAGEMENT statement from a session that connected to the database using the AS SYSKM clause. For example:

```
sqlplus c##sec_admin AS SYSKM
Enter password: password
```

The reason for this is that ADMINISTER KEY MANAGEMENT statements need to be supported when the Oracle data dictionary is not available. The only way to do the necessary privilege check in that situation is to check for the SYSKM administrative privilege in the password file. Note that the system needs to be configured with a password file in order to be able to grant the SYSKM administrative privilege to a user. If the user needs to perform ADMINISTER KEY MANAGEMENT operations such as opening the TDE keystore when the Oracle database is in the MOUNTED state, then the user must be granted the SYSKM administrative privilege.

• A user who has been granted the ADMINISTER KEY MANAGEMENT system privilege, and logs in to the database without the AS SYSKM clause. For example:

```
sqlplus c##sec_officer
Enter password: password
```

To use TDE, you do not need the SYSKM or ADMINISTER KEY MANAGEMENT privileges. You must have the following privileges to encrypt table columns and tablespaces:

- CREATE TABLE
- ALTER TABLE
- CREATE TABLESPACE
- ALTER TABLESPACE (for online and offline tablespace encryption)
- ALTER DATABASE (for offline tablespace encryption)

2.5 Types and Components of Transparent Data Encryption

Transparent Data Encryption can be applied to individual columns or entire tablespaces.

- About Transparent Data Encryption Types and Components
 You can encrypt sensitive data at the column level or the tablespace level.
- How Transparent Data Encryption Tablespace Encryption Works
 Transparent Data Encryption (TDE) tablespace encryption enables you to encrypt an entire tablespace.
- How Transparent Data Encryption Column Encryption Works
 Transparent Data Encryption (TDE) column encryption protects confidential data, such as credit card and Social Security numbers, that is stored in table columns.
- How the Keystore for the Storage of TDE Master Encryption Keys Works
 To control the encryption, you use a keystore and a TDE master encryption key.
- Supported Encryption and Integrity Algorithms
 Oracle supports the AES, ARIA and DES algorithms.

2.5.1 About Transparent Data Encryption Types and Components

You can encrypt sensitive data at the column level or the tablespace level.

At the column level, you can encrypt sensitive data in application table columns. TDE tablespace encryption enables you to encrypt all of the data that is stored in a tablespace.

Both TDE column encryption and TDE tablespace encryption use a two-tiered key-based architecture. Unauthorized users, such as intruders who are attempting security attacks, cannot read the data from storage and back up media unless they have the TDE master encryption key to decrypt it.

2.5.2 How Transparent Data Encryption Tablespace Encryption Works

Transparent Data Encryption (TDE) tablespace encryption enables you to encrypt an entire tablespace.

All of the objects that are created in the encrypted tablespace are automatically encrypted. TDE tablespace encryption is useful if your tables contain sensitive data in multiple columns, or if you want to protect the entire table and not just individual columns. You do not need to perform a granular analysis of each table column to determine the columns that need encryption.

In addition, TDE tablespace encryption takes advantage of bulk encryption and caching to provide enhanced performance. The actual performance impact on applications can vary.

TDE tablespace encryption encrypts all of the data stored in an encrypted tablespace including its redo data. TDE tablespace encryption does not encrypt data that is stored outside of the tablespace. For example, <code>BFILE</code> data is not encrypted because it is stored outside the database. If you create a table with a <code>BFILE</code> column in an encrypted tablespace, then this particular column will not be encrypted.

All of the data in an encrypted tablespace is stored in encrypted format on the disk. Data is transparently decrypted for an authorized user having the necessary privileges to view or modify the data. A database user or application does not need to know if the data in a

particular table is encrypted on the disk. In the event that the data files on a disk or backup media is stolen, the data remains protected.

TDE tablespace encryption uses the two-tiered, key-based architecture to transparently encrypt (and decrypt) tablespaces. The TDE master encryption key is stored in a security module (Oracle wallet, Oracle Key Vault, or Oracle Cloud Infrastructure (OCI) key management service (KMS)). This TDE master encryption key is used to encrypt the TDE tablespace encryption key, which in turn is used to encrypt and decrypt data in the tablespace.

Figure 2-1 shows an overview of the TDE tablespace encryption process.

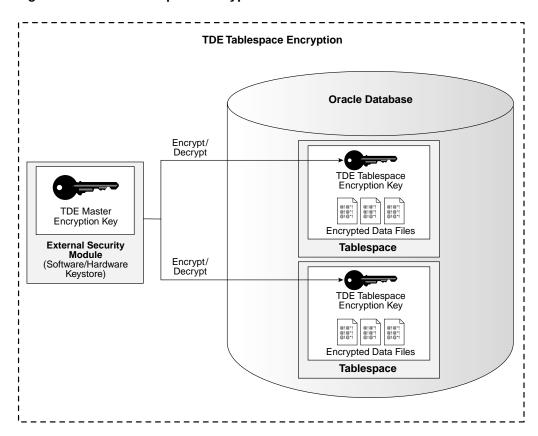


Figure 2-1 TDE Tablespace Encryption

The encrypted data is protected during operations such as ${\tt JOIN}$ and ${\tt SORT}$. This means that the data is safe when it is moved to temporary tablespaces. Data in undo and redo logs is also protected.

TDE tablespace encryption also allows index range scans on data in encrypted tablespaces. It does not interfere with Exadata Hybrid Columnar Compression (EHCC), Oracle Advanced Compression, or Oracle Recovery Manager (Oracle RMAN) compression. This is not possible with TDE column encryption.

2.5.3 How Transparent Data Encryption Column Encryption Works

Transparent Data Encryption (TDE) column encryption protects confidential data, such as credit card and Social Security numbers, that is stored in table columns.

TDE column encryption uses the two-tiered key-based architecture to transparently encrypt and decrypt sensitive table columns. The TDE master encryption key is stored in an external keystore, which can be an Oracle wallet or in Oracle Key Vault. The Oracle wallet is a PKCS#12 container for certificates and encryption keys. It is encrypted with an AES256 key that is derived from the TDE wallet password. This TDE master encryption key encrypts and decrypts the TDE table key, which in turn encrypts and decrypts data in the table column.

Figure 2-2 shows an overview of the TDE column encryption process.

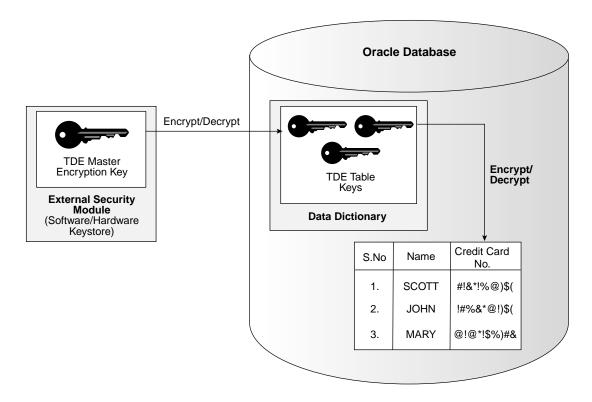


Figure 2-2 TDE Column Encryption Overview

As shown in Figure 2-2, the TDE master encryption key is stored in an external security module that is outside of the database and accessible only to a user who was granted the appropriate privileges. For this external security module, Oracle Database uses an Oracle TDE wallet (TDE wallet, in previous releases) or Oracle Key Vault. Storing the TDE master encryption key in this way prevents its unauthorized use.

Using an external security module separates ordinary program functions from encryption operations, making it possible to assign separate, distinct duties to database administrators and security administrators. Security is enhanced because the keystore password can be unknown to the database administrator, requiring the security administrator to provide the password.

When a table contains encrypted columns, TDE uses a single TDE table key regardless of the number of encrypted columns. Each TDE table key is individually encrypted with the TDE master encryption key.

2.5.4 How the Keystore for the Storage of TDE Master Encryption Keys Works

To control the encryption, you use a keystore and a TDE master encryption key.

- About the Keystore Storage of TDE Master Encryption Keys
 Oracle Database provides a key management framework for Transparent Data
 Encryption (TDE) that stores and manages keys and credentials.
- Benefits of the Keystore Storage Framework
 The key management framework provides several benefits for Transparent Data Encryption.
- Types of Keystores
 Oracle Database supports TDE wallets, Oracle Key Vault, and Oracle Cloud
 Infrastructure (OCI) key management systems (KMS).

2.5.4.1 About the Keystore Storage of TDE Master Encryption Keys

Oracle Database provides a key management framework for Transparent Data Encryption (TDE) that stores and manages keys and credentials.

The key management framework includes the keystore to securely store the TDE master encryption keys and the management framework to securely and efficiently manage keystore and key operations for various database components.

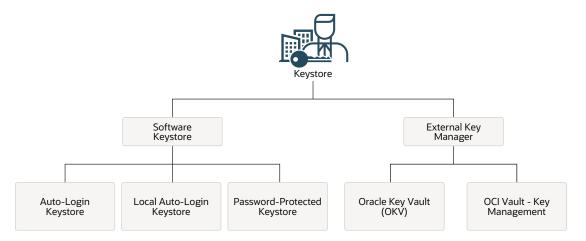
The Oracle keystore stores a history of retired TDE master encryption keys, which enables you to rotate the TDE master encryption key, and still be able to decrypt data (for example, for incoming Oracle Recovery Manager (Oracle RMAN) backups) that was encrypted under an earlier TDE master encryption key.

2.5.4.2 Benefits of the Keystore Storage Framework

The key management framework provides several benefits for Transparent Data Encryption.

- Enables separation of duty between the database administrator and the security administrator who manages the keys. You can grant the ADMINISTER KEY MANAGEMENT OR SYSKM privilege to users who are responsible for managing the keystore and key operations.
- Facilitates compliance, because it helps you to track encryption keys and implement requirements such as keystore password rotation and TDE master encryption key re-key operations. Both wallet password rotations and TDE master key re-key operation do not require database or application downtime.
- Facilitates and helps enforce keystore backup requirements. A backup is a copy of the password-protected TDE wallet that is created for all of the critical keystore operations.

The mandatory WITH BACKUP clause of the ADMINISTER KEY MANAGEMENT statement creates a backup of the password-protected wallet before the changes are applied to the original password-protected wallet.


- Enables the keystore to be stored on an Oracle Automatic Storage Management (Oracle ASM) file system. This is particularly useful for Oracle Real Application Clusters (Oracle RAC) environments where database instances share a unified file system view. In Oracle RAC, you must store the Oracle wallet in a shared location (Oracle ASM or Oracle Advanced Cluster File System (ACFS)), to which all Oracle RAC instances that belong to one database, have access to. Individual TDE wallets for each Oracle RAC instances are not supported.
- Enables reverse migration from an external keystore to a file system-based TDE wallet. This option is useful if you must migrate back to a TDE wallet.

2.5.4.3 Types of Keystores

Oracle Database supports TDE wallets, Oracle Key Vault, and Oracle Cloud Infrastructure (OCI) key management systems (KMS).

Figure 2-3 illustrates the types of keystores that Oracle Database supports.

Figure 2-3 Oracle Database Supported Keystores

These keystores are as follows:

- Auto-login TDE wallets: Auto-login TDE wallets are protected by a system-generated password, and do not need to be explicitly opened by a security administrator. Auto-login TDE wallets are automatically opened when accessed at database startup. Auto-login TDE wallets can be used across different systems. If your environment does not require the extra security provided by a keystore that must be explicitly opened for use, then you can use an auto-login TDE wallet. Auto-login TDE wallets are ideal for unattended scenarios (for example, Oracle Data Guard standby databases).
- Local auto-login TDE wallets: Local auto-login TDE wallets are auto-login TDE wallets
 that are local to the computer on which they are created. Local auto-login TDE wallets
 cannot be opened on any computer other than the one on which they are created. This
 type of keystore is typically used for scenarios where additional security is required (that
 is, to limit the use of the auto-login for that computer) while supporting an unattended
 operation. You cannot use local auto-open wallets in Oracle RAC-enabled databases,
 because only shared wallets (in ACFS or ASM) are supported.
- Password-protected TDE wallets: Password-protected TDE wallets are protected by using a password that you create. You must open this type of wallet before the keys can be retrieved or used, and use a password to open this type of keystore..

TDE wallets can be stored in Oracle Automatic Storage Management (Oracle ASM), Oracle Advanced Cluster File System (Oracle ACFS), or regular file systems.

Under External Keystore Manager are the following categories:

- Oracle Key Vault (OKV): Oracle Key Vault is a software appliance that provides continuous key availability and scalable key management through clustering with up to 16 Oracle Key Vault nodes, potentially deployed across geographically distributed data centers. It is purpose-built for Oracle Database and its many deployment models (Oracle RAC, Oracle Data Guard, Exadata, multitenant environments). In addition, Oracle Key Vault provides online key management for Oracle GoldenGate encrypted trail files and encrypted ACFS. It is also certified for ExaDB-C@C and Autonomous Database (dedicated) (ADB-C@C). Oracle Key Vault is distributed as a full-stack software appliance for installation on dedicated hardware. It is also available in the OCI Marketplace and can be deployed in your OCI tenancy quickly and easily. See the video Deploying Oracle Key Vault in OCI.
- OCI Vault Key Management: The Oracle Cloud Infrastructure (OCI) Key
 Management Service (KMS) is a cloud-based service that provides centralized
 management and control of encryption keys for data stored in OCI. It enables
 integration of encryption with other OCI services such as storage, database, and
 Fusion Applications for protecting data stored in these services.

Related Topics

Oracle Key Vault Administrator's Guide

2.5.5 Supported Encryption and Integrity Algorithms

Oracle supports the AES, ARIA and DES algorithms.

Note:

Starting with Oracle Database 23ai, the following updates are in place:

- The Transparent Data Encryption (TDE) decryption libraries for the GOST and SEED algorithms are deprecated.
- The Transparent Data Encryption (TDE) encryption libraries for the GOST and SEED algorithms are desupported and removed.
- The GOST decryption libraries are desupported on HP Itanium platforms.

The default encryption algorithm for TDE column encryption and TDE tablespace encryption is AES256.

For TDE column encryption, salt is added by default to plaintext before encryption unless specified otherwise. You cannot add salt to indexed columns that you want to encrypt. For indexed columns, choose the NO SALT parameter for the SQL ENCRYPT clause.

You can change encryption algorithms and encryption keys on existing encrypted columns by setting a different algorithm with the SQL ${\tt ENCRYPT}$ clause.

Table 2-1 lists the supported encryption algorithms.

Algorithm Key Size Parameter Name Advanced Encryption Standard (AES) 128 bit AES128 192 bits **AES192** 256 bits (default AES256 for TDE column encryption and TDE tablespace encryption) ARIA 128 bits ARIA128 192 bits ARIA192 256 bits ARIA256 Triple Encryption Standard (DES) 168 bits 3DES168

Table 2-1 Supported Encryption Algorithms for Transparent Data Encryption

For integrity protection of TDE column encryption, the SHA-1 hashing algorithm is used.

Related Topics

Setting the Tablespace Encryption Default Algorithm
 The TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM applies to specific encryption scenarios.

2.6 Transparent Data Encryption in a Multitenant Environment

In a multitenant environment, you can configure keystores for either the entire container database (CDB) or for individual pluggable databases (PDBs).

Oracle Database supports the following multitenant modes for the management of keystores:

- United mode enables you to configure one keystore for the CDB root and any associated united mode PDBs. United mode operates much the same as how TDE was managed in an multitenant environment in previous releases.
- Isolated mode enables you to create and manage both keystores and TDE master encryption keys in an individual PDB. Different isolated mode PDBs can have different keystore types.

Oracle Database supports isolated PDBs with TDE wallets (wallets) and Oracle Key Vault. The cloud tooling in Oracle Cloud Infrastructure (OCI) and the OCI Key Management Service (KMS), do not support isolated PDBs. This includes Oracle Exadata Cloud@Customer (ExaDB-C@C), Autonomous Database Cloud@Customer (ADB-C@C), and Oracle Exadata Database Service (ExaDB-D and ExaDB-D@Azure).

Depending on your site's needs, you can use a mixture of both united mode and isolated mode. For example, if you want most of the PDBs to use one type of a keystore, then you can configure the keystore type in the CDB root (united mode). For the PDBs in this CDB that must use a different type of keystore, then you can configure the PDB itself to use the keystore it needs (isolated mode). The isolated mode setting for the PDB will override the united mode setting for the CDB.

Before you can configure keystores for use in united or isolated mode, you must perform a one-time configuration by using initialization parameters. To configure keystores for united mode and isolated mode, you use the ADMINISTER KEY MANAGEMENT statement.

Related Topics

- Configuring United Mode
 United mode enables you to create a common keystore for the CDB and the PDBs for which the keystore is in united mode.
- Configuring Isolated Mode
 Isolated mode enables you to create a keystore for each pluggable database (PDB).

2.7 Transparent Data Encryption Keystore Search Order

The search order for the TDE keystore depends on how you have set either the instance initialization parameters, the sqlnet.ora parameters, or the environment variables.

Oracle Database retrieves the keystore by searching in these locations, in the following order:

- 1. The location set by the WALLET_ROOT instance initialization parameter, when the KEYSTORE_CONFIGURATION attribute of the TDE_CONFIGURATION initialization parameter is set. Oracle recommends that you use this parameter to configure the keystore location.
- 2. If the KEYSTORE_CONFIGURATION attribute of the TDE_CONFIGURATION initialization parameter is not set or WALLET_ROOT is not set, then the location specified by the ENCRYPTION_WALLET_LOCATION setting (now deprecated in favor of WALLET_ROOT) in the sqlnet.ora file.
- 3. If none of these parameters are set, and if the <code>ORACLE_BASE</code> environment variable is set, then the <code>\$ORACLE_BASE/admin/db_unique_name/wallet</code> directory. If <code>ORACLE_BASE</code> is not set, then <code>\$ORACLE_HOME/admin/db_unique_name/wallet</code>.

Configuring United Mode

United mode enables you to create a common keystore for the CDB and the PDBs for which the keystore is in united mode.

The keys for the CDB and the PDBs reside in the common keystore.

- About Configuring United Mode
 - In united mode (the default), the keystore is shared between the CDB root and all PDBs that are configured in united mode. Each united mode PDB has its own set of encryption keys in the shared keystore.
- Operations That Are Allowed in United Mode
 Many Administer key Management operations performed in the CDB root apply to
 keystores and encryption keys in the united mode PDB.
- Configuring the Keystore Location and Type for United Mode
 For united mode, you can configure the keystore location and type by setting parameters and running the ALTER SYSTEM statement.
- Configuring a TDE Wallet and TDE Master Encryption Key for United Mode
 In united mode, the TDE wallet resides in the CDB root but the master keys from this
 wallet are available for the PDBs that have their TDE wallets in united mode.
- Operations That Are Not Allowed in a United Mode PDB
 ADMINISTER KEY MANAGEMENT operations that are not allowed in a united mode PDB can be performed in the CDB root.
- Configuring a Container Database with United Mode PDBs for Oracle Key Vault
 The TDE master keys of all united mode PDBs and the CDB reside in the same virtual
 wallet in Oracle Key Vault.

3.1 About Configuring United Mode

In united mode (the default), the keystore is shared between the CDB root and all PDBs that are configured in united mode. Each united mode PDB has its own set of encryption keys in the shared keystore.

The keys for PDBs having keystore in united mode, can be created from CDB root or from the PDB.

This design enables you to have one keystore to manage the entire CDB environment, enabling the PDBs to share this keystore, but you can customize the behavior of this keystore in the individual united mode PDBs. For example, in a united mode PDB, you can configure a TDE master encryption key for the PDB in the united keystore that you created in the CDB root, open the keystore locally, and close the keystore locally. In order to perform these actions, the keystore in the CDB root must be open.

Before you configure your environment to use united mode or isolated mode, all the PDBs in the CDB environment are considered to be in united mode.

To use united mode, you must follow these general steps:

- 1. In the CDB root, configure the database to use united mode by setting the WALLET ROOT and TDE CONFIGURATION parameters.
 - The WALLET_ROOT parameter sets the location for the wallet directory and the TDE CONFIGURATION parameter sets the type of keystore to use.
- 2. Restart the database after setting the static initialization parameter WALLET_ROOT, then set the dynamic initialization parameter TDE CONFIGURATION.
- 3. In the CDB root, create the keystore, open the keystore, and then create the TDE master encryption key.
- 4. In each united mode PDB, perform TDE master encryption key tasks as needed, such as opening the keystore locally in the united mode PDB and creating the TDE master encryption key for the PDB. Remember that the keystore is managed by the CDB root, but must contain a TDE master encryption key that is specific to the PDB for the PDB to be able to use TDE.

When you run ADMINISTER KEY MANAGEMENT statements in united mode from the CDB root, if the statement accepts the CONTAINER clause, and if you set it to ALL, then the statement applies only to the CDB root and its associated united mode PDBs. Any PDB that is in isolated mode is not affected.

3.2 Operations That Are Allowed in United Mode

Many ADMINISTER KEY MANAGEMENT operations performed in the CDB root apply to keystores and encryption keys in the united mode PDB.

Available United Mode-Related Operations in a CDB Root

Table 3-1 describes the ADMINISTER KEY MANAGEMENT operations that you can perform in the CDB root.

Table 3-1 ADMINISTER KEY MANAGEMENT United Mode Operations in a CDB Root

Operation	Syntax	Notes
Creating a keystore	ADMINISTER KEY MANAGEMENT CREATE KEYSTORE IDENTIFIED BY keystore_password;	After you create the keystore in the CDB root, by default it is available in the united mode PDBs. Do not include the CONTAINER clause.
Opening a keystore	ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY [EXTERNAL STORE keystore_password] [CONTAINER = ALL CURRENT];	In this operation, the EXTERNAL STORE clause fetches the keystore password from the SSO wallet located in the WALLET_ROOT/tde_seps directory.

Table 3-1 (Cont.) ADMINISTER KEY MANAGEMENT United Mode Operations in a CDB Root

Operation	Syntax	Notes
Changing a keystore password	ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD IDENTIFIED BY old_keystore_password SET new_keystore_password WITH BACKUP [USING 'backup_identifier'];	Do not include the CONTAINER clause.
Backing up a keystore	ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE [USING 'backup_identifier'] [FORCE KEYSTORE] IDENTIFIED BY [EXTERNAL STORE keystore_password] [TO 'keystore_location'];	Do not include the CONTAINER clause.
Closing a keystore without force	ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE [IDENTIFIED BY [EXTERNAL STORE keystore_password]] [CONTAINER = ALL CURRENT];	-
Closing a keystore with force	ADMINISTER KEY MANAGEMENT FORCE KEYSTORE CLOSE [IDENTIFIED BY [EXTERNAL STORE keystore_password]] [CONTAINER = ALL CURRENT];	-
Creating and activating a new TDE master encryption key (rekeying)	ADMINISTER KEY MANAGEMENT SET [ENCRYPTION] KEY [FORCE KEYSTORE] [USING TAG 'tag_name'] IDENTIFIED BY [EXTERNAL STORE keystore_password] WITH BACKUP [USING 'backup_identifier'] [CONTAINER = ALL CURRENT]	-
Creating a user- defined TDE master encryption key for either now (SET) or later on (CREATE)	ADMINISTER KEY MANAGEMENT [SET CREATE] [ENCRYPTION] KEY 'mkid:mk mk' [USING ALGORITHM 'algorithm'] [FORCE KEYSTORE] [USING TAG 'tag_name'] IDENTIFIED BY [EXTERNAL STORE keystore_password] [WITH BACKUP [USING 'backup_identifier']] [CONTAINER = CURRENT];	

Table 3-1 (Cont.) ADMINISTER KEY MANAGEMENT United Mode Operations in a CDB Root

Operation	Syntax	Notes
Activating an existing TDE master encryption key	ADMINISTER KEY MANAGEMENT USE [ENCRYPTION] KEY 'key_id' IDENTIFIED BY [EXTERNAL STORE keystore_password] WITH BACKUP [USING 'backup_identifier'];	Do not include the CONTAINER clause.
Tagging a TDE master encryption key	ADMINISTER KEY MANAGEMENT SET TAG 'tag' FOR 'key_id' IDENTIFIED BY [EXTERNAL STORE keystore_password] WITH BACKUP [USING 'backup_identifier'];	Do not include the CONTAINER clause.
Moving a TDE master encryption key to a new keystore	ADMINISTER KEY MANAGEMENT MOVE [ENCRYPTION] KEYS TO NEW KEYSTORE 'keystore_location1' IDENTIFIED BY keystore1_password FROM [FORCE] KEYSTORE IDENTIFIED BY keystore_password [WITH IDENTIFIER IN { 'key_id' [, 'key_id'] (subquery) }] WITH BACKUP [USING 'backup_identifier'];	You can only move the master encryption key to a keystore that is within the same container (for example, between keystores in the CDB root or between keystores in the same PDB). You cannot move the master encryption key from a keystore in the CDB root to a keystore in a PDB, and vice versa. Do not include the CONTAINER clause.

Available Operations in a United Mode PDB

Table 3-2 describes the ADMINISTER KEY MANAGEMENT operations that you can perform in a united mode PDB.

Table 3-2 ADMINISTER KEY MANAGEMENT United Mode PDB Operations

Operation	Syntax	Notes
Opening a keystore	ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE [IDENTIFIED BY EXTERNAL STORE keystore_password] [CONTAINER = CURRENT];	In this operation, the EXTERNAL_STORE clause uses the password in the TDE SEPS SSO wallet. This wallet is located in the tde_seps directory in the WALLET_ROOT location.
Closing a keystore without force	ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE [EXTERNAL STORE keystore_password] [CONTAINER = CURRENT];	-

Table 3-2 (Cont.) ADMINISTER KEY MANAGEMENT United Mode PDB Operations

Operation	Syntax	Notes
Closing a keystore with force	ADMINISTER KEY MANAGEMENT FORCE KEYSTORE CLOSE IDENTIFIED BY [EXTERNAL STORE keystore_password] [CONTAINER = CURRENT];	-
Creating and activating a new TDE master encryption key (rekeying or rotating)	ADMINISTER KEY MANAGEMENT SET [ENCRYPTION] KEY [FORCE KEYSTORE] [USING TAG 'tag_name'] IDENTIFIED BY EXTERNAL STORE keystore_password WITH BACKUP [USING 'backup_identifier'] [CONTAINER = CURRENT];	
Creating a user-defined TDE master encryption key for use either now (SET) or later on (CREATE)	ADMINISTER KEY MANAGEMENT SET CREATE [ENCRYPTION] KEY 'mkid:mk mk' [USING ALGORITHM 'algorithm'] [FORCE KEYSTORE] [USING TAG 'tag'] IDENTIFIED BY EXTERNAL STORE keystore_password WITH BACKUP [USING 'backup_identifier'] [CONTAINER = CURRENT];	
Activating an existing TDE master encryption key	ADMINISTER KEY MANAGEMENT USE [ENCRYPTION] KEY 'key_id' IDENTIFIED BY EXTERNAL STORE keystore_password WITH BACKUP [USING 'backup_identifier'];	Do not include the CONTAINER clause.
Tagging a TDE master encryption key	ADMINISTER KEY MANAGEMENT SET TAG 'tag' FOR 'key_id' [FORCE KEYSTORE] IDENTIFIED BY EXTERNAL STORE keystore_password WITH BACKUP [USING 'backup_identifier'];	Do not include the CONTAINER clause.

Table 3-2 (Cont.) ADMINISTER KEY MANAGEMENT United Mode PDB Operations

Operation	Syntax	Notes
Moving an encryption key to a new keystore	ADMINISTER KEY MANAGEMENT MOVE [ENCRYPTION] KEYS TO NEW KEYSTORE 'new_keystore_location' IDENTIFIED BY new_keystore_password FROM [FORCE] KEYSTORE IDENTIFIED BY keystore_password [WITH IDENTIFIER IN { 'key_id' [, 'key_id'] (subquery) }] WITH BACKUP [USING 'backup_identifier'];	Do not include the CONTAINER clause.
Moving a key from a united mode keystore in the CDB root to an isolated mode keystore in a PDB	ADMINISTER KEY MANAGEMENT ISOLATE KEYSTORE IDENTIFIED BY isolated_keystore_password FROM ROOT KEYSTORE [FORCE KEYSTORE] IDENTIFIED BY EXTERNAL STORE united_keystore_password WITH BACKUP [USING backup_id];	Do not include the CONTAINER clause.
Using the FORCE clause when a clone of a PDB is using the TDE master encryption key that is being isolated; then copying (rather than moving) the TDE master encryption keys from the keystore that is in the CDB root into the isolated mode keystore of the PDB	ADMINISTER KEY MANAGEMENT FORCE ISOLATE KEYSTORE IDENTIFIED BY isolated_keystore_password FROM ROOT KEYSTORE [FORCE KEYSTORE] IDENTIFIED BY [EXTERNAL STORE united_keystore_password] [WITH BACKUP [USING backup_id]];	

3.3 Configuring the Keystore Location and Type for United Mode

For united mode, you can configure the keystore location and type by setting parameters and running the ${\tt ALTER}$ SYSTEM statement.

About Configuring the Keystore Location and Type for United Mode
 A keystore is a container that stores the TDE master encryption key.

- Configuring United Mode with the Initialization Parameter File and ALTER SYSTEM If your environment relies on server parameter files (spfile), then you can set WALLET ROOT and TDE CONFIGURATION using ALTER SYSTEM SET with SCOPE.
- Example: Configuring a TDE Wallet When Multiple Databases Share the Same Host You can configure multiple databases to share the same host by setting the WALLET_ROOT parameter.
- Example: Configuring a TDE Wallet for an Oracle Automatic Storage Management Disk Group

In an Oracle Real Applications Clusters (Oracle RAC) environment, the WALLET_ROOT parameter points to a shared directory in Oracle Automatic Storage Management (ASM) that is accessible from all Oracle RAC instances of that database.

3.3.1 About Configuring the Keystore Location and Type for United Mode

A keystore is a container that stores the TDE master encryption key.

Before you can configure the keystore, you first must define a location for it by setting the static initialization parameter WALLET_ROOT. Then, after a database restart, you must set the dynamic initialization parameter TDE_CONFIGURATION to instruct the database to retrieve the master encryption key from a TDE wallet, Oracle Key Vault, or Oracle Cloud Interface (OCI) Key Management Service (KMS), according to their documentation. If this setting has not been created, then Oracle Database checks the sqlnet.ora file. You can create other TDE wallets, such as copies of the wallet and export files that contain keys, depending on your needs. If you must remove or delete the wallet that you configured in the WALLET_ROOT location, then you must do so *only* after you copied *all* wallets (including backups and autologin wallets) in the old to the new location. Then you must reset WALLET_ROOT to point to the new location of the TDE wallet.

After you configure the keystore location by using the WALLET_ROOT and TDE_CONFIGURATION parameters, you can log in to the CDB to create and open the TDE wallet, and then set the TDE master encryption key. After you complete these steps, you can begin to encrypt data.

3.3.2 Configuring United Mode with the Initialization Parameter File and ALTER SYSTEM

If your environment relies on server parameter files (spfile), then you can set WALLET_ROOT and TDE CONFIGURATION using ALTER SYSTEM SET with SCOPE.

- 1. Log in to the database server where the CDB root of the Oracle database resides.
- 2. If necessary, create a wallet directory.
 - This directory cannot contain any wallets. Oracle recommends that you create a directory outside of <code>\$ORACLE_HOME</code> or <code>\$ORACLE_BASE</code>, to avoid backing up the keystore (wallet or Oracle Key Vault installation tree) with the encrypted database during an operating system-level backup.
- 3. Connect to the CDB root as a common user who has been granted the ALTER SYSTEM privilege.
- 4. Run the following ALTER SYSTEM statement:
 - ALTER SYSTEM SET WALLET ROOT='/etc/ORACLE/KEYSTORES/\${ORACLE SID}' SCOPE = SPFILE;
- Restart the CDB.


```
SHUTDOWN IMMEDIATE STARTUP
```

6. In the CDB root, check the WALLET ROOT setting.

```
SHOW PARAMETER WALLET ROOT
```

The VALUE column of the output should show the absolute path location of the wallet directory. For example:

```
wallet root string /etc/ORACLE/KEYSTORES/finance
```

7. Set the TDE_CONFIGURATION dynamic initialization parameter to specify the keystore type, using the following syntax:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=keystore_type" SCOPE=BOTH;

In this specification:

- keystore type can be one of the following settings:
 - FILE configures a TDE keystore.
 - OKV configures an Oracle Key Vault keystore.
- scope type sets the type of scope, which in this case is BOTH.

To configure a TDE keystore if the server parameter file (spfile) is in use:

```
ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE" SCOPE=BOTH SID = '*';
```

8. Check the TDE CONFIGURATION parameter setting.

```
SHOW PARAMETER TDE CONFIGURATION
```

The ${\tt VALUE}$ column should show the keystore type, prepended with ${\tt KEYSTORE}$ CONFIGURATION=.

9. Confirm that the TDE CONFIGURATION parameter was set correctly.

```
SELECT CON ID, KEYSTORE MODE FROM V$ENCRYPTION WALLET;
```

The output should be similar to the following:

```
CON_ID KEYSTORE

1 NONE
2 UNITED
3 UNITED
4 UNITED
5 UNITED
```

The CDB root (CON_ID 1) will always be in the NONE state, and at this stage, the remaining CON_IDS should be set to UNITED. PDBs can be either UNITED or ISOLATED, depending on how you configure them. When you query the V\$ENCRYPTION_WALLET view, if the ORA-46691: The value of the KEYSTORE_CONFIGURATION attribute is invalid error appears, then check the initialization parameter file where you added this setting.

After you configure united mode, you can create keystores and master encryption keys, and when these are configured, you can encrypt data.

3.3.3 Example: Configuring a TDE Wallet When Multiple Databases Share the Same Host

You can configure multiple databases to share the same host by setting the WALLET_ROOT parameter.

Because the WALLET_ROOT parameter is internal to an Oracle database, you only need to set the parameter to enable multiple databases to share the same host.

For example:

```
ALTER SYSTEM SET WALLET_ROOT = '/etc/ORACLE/KEYSTORES/${ORACLE_SID}' SCOPE = SPFILE;
```

To implement clean separation of individual TDE wallets for each database, add the <code>ORACLE_SID</code> (or <code>ORACLE_UNQNAME</code> in Oracle Real Application Clusters) into the <code>WALLET_ROOT</code> parameter setting.

3.3.4 Example: Configuring a TDE Wallet for an Oracle Automatic Storage Management Disk Group

In an Oracle Real Applications Clusters (Oracle RAC) environment, the WALLET_ROOT parameter points to a shared directory in Oracle Automatic Storage Management (ASM) that is accessible from all Oracle RAC instances of that database.

The following example shows you how to set <code>WALLET_ROOT</code> and <code>TDE_CONFIGURATION</code> for a TDE wallet in ASM:

```
ALTER SYSTEM SET WALLET_ROOT = '+DATA/unique_name_of_database' SCOPE = SPFILE SID = '*';
```

For example, if you set this value to +DATA/FINRAC, then the /tde directory is automatically generated when you create a TDE wallet.

Related Topics

Configuring Keystores for Automatic Storage Management
 You can store a TDE wallet on an Automatic Storage Management (ASM) disk group.

3.4 Configuring a TDE Wallet and TDE Master Encryption Key for United Mode

In united mode, the TDE wallet resides in the CDB root but the master keys from this wallet are available for the PDBs that have their TDE wallets in united mode.

- About Configuring a TDE Wallet and TDE Master Encryption Key for United Mode
 In united mode, the TDE wallet that you create in the CDB root will be accessible by the
 united mode PDBs.
- Step 1: Create the TDE Wallet
 After you have specified a directory location for the TDE wallet, you can create this wallet.

- Step 2: Open the TDE Wallet
 Depending on the type of TDE wallet you create, you must manually open the
 wallet before you can use it.
- Step 3: Set the TDE Master Encryption Key in the TDE Wallet
 Once the TDE wallet is open, you can set a TDE master encryption key for it.
- Step 4: Encrypt Your Data in United Mode
 Now that you have completed the configuration, you can begin to encrypt data.

3.4.1 About Configuring a TDE Wallet and TDE Master Encryption Key for United Mode

In united mode, the TDE wallet that you create in the CDB root will be accessible by the united mode PDBs.

In general, to configure a united mode TDE wallet after you have enabled united mode, you create and open the TDE wallet in the CDB root, and then create a master encryption key for this TDE wallet. Afterward, you can begin to encrypt data for tables and tablespaces that will be accessible throughout the CDB environment.

The V\$ENCRYPTION_WALLET dynamic view describes the status and location of the TDE wallet. For example, the following query shows the open-closed status and the TDE wallet location of the CDB root TDE wallet (CON_ID_1) and its associated united mode PDBs. The WRL_PARAMETER column shows the CDB root TDE wallet location being in the WALLET ROOT/tde directory.

```
SELECT CON_ID, STATUS, WRL_PARAMETER FROM V$ENCRYPTION_WALLET;

CON_ID STATUS WRL_PARAMETER

1 OPEN /app/oracle/wallet/tde/
2 CLOSED
3 OPEN
4 OPEN
5 OPEN
```

In this output, there is no keystore path listed for the other PDBs in this CDB because these PDBs use the keystore in the CDB root. If any of these PDBs are isolated and you create a keystore in the isolated mode PDB, then when you perform this query, the WRL_PARAMETER column will show the keystore path for the isolated mode PDB.

You can hide the TDE wallet password in a secure external password store:

```
ADMINISTER KEY MANAGEMENT ADD SECRET 'TDE_wallet_password' FOR CLIENT 'TDE_WALLET' INTO [LOCAL] AUTO_LOGIN KEYSTORE 'WALLET_ROOT/tde_seps';
```

This feature enables you to hide the password from the operating system: it removes the need for storing clear-text keystore passwords in scripts or other tools that can access the database without user intervention, such as overnight batch scripts. The location for this wallet is $wallet_root/tde_seps$. In a multitenant environment, different PDBs can access this external store location when you run the <code>ADMINISTER</code> KEY MANAGEMENT statement using the <code>IDENTIFIED</code> BY EXTERNAL STORE clause. This way, you can centrally locate the password and then update it only once in the external store.

3.4.2 Step 1: Create the TDE Wallet

After you have specified a directory location for the TDE wallet, you can create this wallet.

- About Creating TDE Wallets
 There are three different types of TDE wallets.
- Creating a Password-Protected TDE Wallet
 A password-protected TDE wallet requires a password, which is used to protect the TDE master keys. In united mode, you must create the TDE wallet in the CDB root.
- Creating an Auto-Login or a Local Auto-Login TDE Wallet
 As an alternative to password-protected TDE wallets, you can create either an auto-login or local auto-login TDE wallet.

3.4.2.1 About Creating TDE Wallets

There are three different types of TDE wallets.

You can create password-protected TDE wallets, auto-login TDE wallets, and local auto-login TDE wallets.

Be aware that running the query <code>SELECT * FROM V\$ENCRYPTION_WALLET</code> will automatically open an auto-login TDE wallet. For example, suppose you have a password-protected TDE wallet and an auto-login TDE wallet. If the password-protected TDE wallet is open and you close the password-protected TDE wallet and then query the <code>V\$ENCRYPTION_WALLET</code> view, then the output will indicate that a TDE wallet is open. However, this is because <code>V\$ENCRYPTION_WALLET</code> opened up the auto-login TDE wallet and then displayed the status of the auto-login wallet.

Related Topics

Types of Keystores
 Oracle Database supports TDE wallets, Oracle Key Vault, and Oracle Cloud Infrastructure (OCI) key management systems (KMS).

3.4.2.2 Creating a Password-Protected TDE Wallet

A password-protected TDE wallet requires a password, which is used to protect the TDE master keys. In united mode, you must create the TDE wallet in the CDB root.

After you create this TDE wallet in the CDB root, it becomes available for all united PDBs, but not for isolated PDBs.

A TDE wallet can only contain TDE-related security objects, and no security objects used by other database or application components. In addition, do not use orapki or mkstore to create password-protected or (local) auto-open TDE wallets. Instead, use the ADMINISTER KEY MANAGEMENT statement.

- 1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT OR SYSKM privilege.
- 2. Use the SHOW PARAMETER command to confirm that WALLET_ROOT is set, and TDE CONFIGURATION is set to KEYSTORE CONFIGURATION=FILE.
- 3. Run the ADMINISTER KEY MANAGEMENT SQL statement to create the TDE wallet using the following syntax:


```
ADMINISTER KEY MANAGEMENT CREATE KEYSTORE IDENTIFIED BY TDE wallet password;
```

The /tde directory is automatically created under WALLET_ROOT, if it does not already exist. In Oracle Automatic Storage Management (Oracle ASM), for the /tde directory to be automatically created if it does not already exist, WALLET ROOT must point to +DATA/ORACLE UNQNAME.

In this specification, <code>TDE_wallet_password</code> is the password of the TDE wallet that you, the security administrator, creates.

For example, to create the TDE wallet in the WALLET ROOT/tde directory:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE IDENTIFIED BY TDE_wallet_password; keystore altered.

After you run this statement, the <code>ewallet.p12</code> file, which is the TDE wallet, appears in the TDE wallet location.

After you complete these steps, the ewallet.p12 file, which contains the TDE wallet, appears in the designated TDE wallet location. For example, if you had set the WALLET_ROOT parameter to /etc/ORACLE/KEYSTORES/\${ORACLE_SID} and the TDE_CONFIGURATION parameter to FILE (for TDE, which creates a tde directory in the wallet root location), then the TDE wallet will be created in the /etc/ORACLE/KEYSTORES/\${ORACLE_SID}/tde directory. The name of the TDE wallet is ewallet.p12.

Related Topics

Configuring an External Store for a Keystore Password
 An external store for a keystore password stores the keystore password in a centrally accessed and managed location.

3.4.2.3 Creating an Auto-Login or a Local Auto-Login TDE Wallet

As an alternative to password-protected TDE wallets, you can create either an autologin or local auto-login TDE wallet.

Both of these TDE wallets have system-generated passwords. They are also PKCS#12-based files. The auto-login TDE wallet can be opened from different computers from the computer where this TDE wallet resides, but the local auto-login TDE wallet can only be opened from the computer on which it was created. Both the auto-login and local auto-login TDE wallets are created from the password-protected TDE wallets. Creating any of them does not require database downtime.

- 1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Use the SHOW PARAMETER command to confirm that WALLET_ROOT is set, and TDE CONFIGURATION is set to KEYSTORE CONFIGURATION=FILE.
- 3. Create the auto-login or local auto-login TDE wallet by using the following syntax:

ADMINISTER KEY MANAGEMENT CREATE [LOCAL] AUTO_LOGIN KEYSTORE FROM KEYSTORE IDENTIFIED BY TDE_wallet_password;

In this specification:

• LOCAL enables you to create a local auto-login TDE wallet. Otherwise, omit this clause if you want the TDE wallet to be accessible by other computers. LOCAL

creates a local auto-login wallet file, <code>cwallet.sso</code>, and this wallet will be tied to the host on which it was created. For an Oracle Real Application Clusters (Oracle RAC) environment, omit the <code>LOCAL</code> keyword, because each Oracle RAC node has a different host name. If you configure a local auto-login wallet for the Oracle RAC instance, then only the first Oracle RAC node, where the <code>cwallet.sso</code> file was created, would be able to access the TDE wallet. If you try to open the TDE wallet from another node instead of from that first node, there would be a problem auto-opening <code>cwallet.sso</code>, and so it would result in a failure to auto-open the TDE wallet. This restriction applies if you are using a shared location to hold the <code>cwallet.sso</code> file for the Oracle RAC cluster, because using <code>LOCAL</code> only works if you have a separate <code>cwallet.sso</code> file (containing the same credentials) on each node of the Oracle RAC environment.

• TDE_wallet_password is the password of the TDE wallet from which you want to create.

For example, to create an auto-login TDE wallet of the password-protected TDE wallet that is located in the $ORACLE\ WALLET/tde$ directory:

```
ADMINISTER KEY MANAGEMENT CREATE AUTO_LOGIN KEYSTORE FROM KEYSTORE IDENTIFIED BY password;
```

keystore altered.

After you run this statement, the cwallet.sso file appears in the TDE wallet location. The ewallet.p12 file is the password-protected wallet.

Follow these guidelines:

- Do not remove the PKCS#12 wallet (ewallet.p12 file) after you create the auto-login TDE wallet (.sso file). You must have the PKCS#12 wallet to regenerate or rekey the TDE master encryption key in the future.
- Remember that Transparent Data Encryption uses an auto login TDE wallet only if it is available at the correct location (WALLET_ROOT/tde), and the SQL statement to open an encrypted TDE wallet has not already been run. If you have the ENCRYPTION_WALLET_LOCATION parameter set, then be aware this parameter is deprecated. Oracle recommends that you use the WALLET_ROOT static initialization parameter and TDE_CONFIGURATION dynamic initialization parameter instead.

3.4.3 Step 2: Open the TDE Wallet

Depending on the type of TDE wallet you create, you must manually open the wallet before you can use it.

- About Opening TDE Wallets
 - A password-protected TDE wallet must be open before any TDE master encryption keys can be created or accessed in the wallet.
- Opening the TDE Wallet in a United Mode PDB
 To open a TDE wallet in united mode, you must use the ADMINISTER KEY MANAGEMENT statement with the SET KEYSTORE OPEN clause.

3.4.3.1 About Opening TDE Wallets

A password-protected TDE wallet must be open before any TDE master encryption keys can be created or accessed in the wallet.

Many Transparent Data Encryption operations require the TDE wallet to be open. There are two ways that you can open the TDE wallet:

- Manually open the wallet by issuing the ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN statement. Afterward, you can perform the operation.
- Include the FORCE KEYSTORE clause in the ADMINISTER KEY MANAGEMENT statement that is used to perform the operation. FORCE KEYSTORE temporarily opens the TDE wallet for the duration of the operation, and when the operation completes, the TDE wallet is closed again. FORCE KEYSTORE is useful for situations when the database is heavily loaded. In this scenario, because of concurrent access to encrypted objects in the database, the auto-login TDE wallet continues to open immediately after it has been closed but before a user has had chance to open the password-based TDE wallet.

TDE wallets can be in the following states: open, closed, open but with no master encryption key, open but with an unknown master encryption key, undefined, or not available (that is, not present in the WALLET ROOT/tde location).

After you manually open a TDE wallet, it remains open until you manually close it. Each time you restart a PDB or CDB, you must manually open the password TDE wallet to reenable encryption and decryption operations.

You can check the status of whether a TDE wallet is open or not by querying the STATUS column of the V\$ENCRYPTION WALLET view.

Related Topics

- Performing Operations That Require a Keystore Password
 Many ADMINISTER KEY MANAGEMENT operations require access to a keystore password, for both TDE wallets and external keystores.
- How Keystore Open and Close Operations Work in United Mode
 You should be aware of how keystore open and close operations work in united
 mode.

3.4.3.2 Opening the TDE Wallet in a United Mode PDB

To open a TDE wallet in united mode, you must use the ADMINISTER KEY MANAGEMENT statement with the SET KEYSTORE OPEN clause.

- **1.** Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Open the TDE wallet in the CDB root.

For example:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY password;

keystore altered.

If the CDB is configured with the TDE wallet password stored in <code>WALLET_ROOT/tde_seps</code> and has a (local) auto-login TDE wallet in <code>WALLET_ROOT/tde</code>, you must include the <code>FORCE KEYSTORE</code> clause and the <code>IDENTIFIED BY EXTERNAL STORE</code> clause in the <code>ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN STATEMENT</code>, as follows:


```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE;
```

keystore altered.

If the WALLET_ROOT parameter has been set, then Oracle Database finds the external store in the WALLET ROOT/tde seps directory.

3. Ensure that the PDB in which you want to open the TDE wallet is in READ WRITE mode.

For example:

SHOW PDBS

CON_ID	CON_NAME	OPEN MODE	RESTRICTED
2	PDB\$SEED	READ ONLY	NO
3	CDB1 PDB1	READ WRITE	NO

If any PDB has an OPEN MODE value that is different from READ WRITE, then run the following statement to open the PDB, which will set it to READ WRITE mode:

```
ALTER PLUGGABLE DATABASE CDB1_PDB1 OPEN;
```

Now the TDE wallet can be opened in both the CDB root and the PDB.

- Connect to the PDB.
- 5. Run the ADMINISTER KEY MANAGEMENT statement to open the TDE wallet.

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY TDE_wallet_password | EXTERNAL STORE; keystore altered.
```

To open a password-protected TDE wallet when a (local) auto-login TDE wallet is open, specify the FORCE KEYSTORE clause as follows.

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN FORCE KEYSTORE

IDENTIFIED BY TDE_wallet_password | EXTERNAL STORE; keystore altered.
```

FORCE KEYSTORE is also useful for databases that are heavily loaded. The IDENTIFIED BY EXTERNAL STORE clause is included in the statement because the TDE wallet credentials exist in an external store. This enables the password-protected TDE wallet to be opened without specifying the TDE wallet password within the statement itself.

If the <code>WALLET_ROOT</code> parameter has been set in the CDB, then united PDBs find the external store in the $WALLET_ROOT/tde_seps$ directory.

6. Confirm that the TDE wallet is open.

```
SELECT STATUS FROM V$ENCRYPTION_WALLET;
```

Note that if the TDE wallet is open but you have not created a TDE master encryption key yet, the STATUS column of the V\$ENCRYPTION_WALLET view reminds you with an OPEN NO MASTER KEY status.

3.4.4 Step 3: Set the TDE Master Encryption Key in the TDE Wallet

Once the TDE wallet is open, you can set a TDE master encryption key for it.

- About Setting the TDE Wallet TDE Master Encryption Key
 The TDE master encryption key is stored in the TDE wallet.
- Setting the TDE Master Encryption Key in the United Mode TDE Wallet
 To set the TDE master encryption key in the TDE wallet when the PDB is
 configured in united mode, use the ADMINISTER KEY MANAGEMENT statement with
 the SET KEY clause.

3.4.4.1 About Setting the TDE Wallet TDE Master Encryption Key

The TDE master encryption key is stored in the TDE wallet.

The TDE master encryption key protects the TDE table keys and tablespace encryption keys. By default, the TDE master encryption key is a key that TDE generates. You can find if a TDE wallet has no TDE master encryption key set or an unknown TDE master encryption key by querying the STATUS column of the V\$ENCRYPTION WALLET view.

You can import a master encryption key (bring your own key (BYOK)), that was created outside of the database, into the TDE wallet. You can set a key for immediate use, using <code>ADMINISTER KEY MANAGEMENT SET</code>, or create a key for later use, by activating it with the <code>ADMINISTER KEY MANAGEMENT USE KEY STATEMENT</code>.

Related Topics

- Creating User-Defined TDE Master Encryption Keys
 You can create a user-defined TDE master encryption key outside the database by generating a TDE master encryption key ID.
- Creating TDE Master Encryption Keys for Later Use in United Mode
 You can create a TDE master encryption key that can be activated at a later date.

3.4.4.2 Setting the TDE Master Encryption Key in the United Mode TDE Wallet

To set the TDE master encryption key in the TDE wallet when the PDB is configured in united mode, use the <code>ADMINISTER KEY MANAGEMENT</code> statement with the <code>SET KEY</code> clause.

- 1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Ensure that the CDB is open in READ WRITE mode.

You can set the TDE master encryption key if <code>OPEN_MODE</code> is set to <code>READ WRITE</code>. To find the status, query the <code>OPEN_MODE</code> column of the <code>V\$DATABASE</code> dynamic view. (If you cannot access this view, then connect as <code>SYSDBA</code> and try the query again. In order to connect as <code>SYSKM</code> for this type of query, you must create a password file for it.)

3. Run the ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY statement to set the TDE master encryption key in the TDE wallet.

Use the following syntax:

```
ADMINISTER KEY MANAGEMENT SET KEY
[USING TAG 'tag']
[FORCE KEYSTORE]

IDENTIFIED BY EXTERNAL STORE | TDE_wallet_password
WITH BACKUP [USING 'backup identifier'];
```


In this specification:

- tag is the associated attributes and information that you define. Enclose this setting in single quotation marks (' ').
- FORCE KEYSTORE should be included if the TDE wallet is closed. This automatically
 opens the keystore before setting the TDE master encryption key. The FORCE
 KEYSTORE clause also switches over to opening the password-protected TDE wallet
 when an auto-login TDE wallet is configured and is currently open.
- IDENTIFIED BY specifies the TDE wallet password. Alternatively, if the TDE wallet password is in an external store, you can use the IDENTIFIED BY EXTERNAL STORE clause.
- WITH BACKUP creates a backup of the TDE wallet. You must use this option for password-protected TDE wallets. Optionally, you can use the USING clause to add a brief description of the backup. Enclose this description in single quotation marks (' '). This identifier is appended to the named TDE wallet file (for example, ewallet_time_stamp_emp_key_backup.p12, with emp_key_backup being the backup identifier). Follow the file naming conventions that your operating system uses.

For example, if the TDE wallet is password-protected and open, and you want to set the TDE master encryption key in the current container:

```
ADMINISTER KEY MANAGEMENT SET KEY
IDENTIFIED BY EXTERNAL STORE | TDE_wallet_password
WITH BACKUP USING 'emp key backup';
```

If the TDE wallet is closed:

```
ADMINISTER KEY MANAGEMENT SET KEY
[USING TAG 'tag']
FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE | TDE_wallet_password
WITH BACKUP USING 'emp key backup';
```

4. Confirm that the TDE master encryption key is set.

```
SELECT MASTERKEY ACTIVATED FROM V$DATABASE KEY INFO;
```

The output should be YES.

Related Topics

About Setting the TDE Wallet TDE Master Encryption Key
 The TDE master encryption key is stored in the TDE wallet.

3.4.5 Step 4: Encrypt Your Data in United Mode

Now that you have completed the configuration, you can begin to encrypt data.

Related Topics

- Encrypting Columns in Tables
 - You can use Transparent Data Encryption to encrypt individual columns in database tables.
- Encryption Conversions for Tablespaces and Databases
 You can perform encryption operations on both offline and online tablespaces and databases.

3.5 Operations That Are Not Allowed in a United Mode PDB

ADMINISTER KEY MANAGEMENT operations that are not allowed in a united mode PDB can be performed in the CDB root.

These operations are as follows:

- Keystore operations:
 - Performing merge operations on keystores
 - Exporting a keystore
 - Importing a keystore
 - Migrating a keystore
 - Reverse-migrating a keystore
 - Moving the keys of a keystore that is in the CDB root into the keystores of a PDB
 - Moving the keys from a PDB into a united mode keystore that is in the CDB root
- Encryption key operations:
 - Using the CONTAINER = ALL clause to create a new TDE master encryption key for later user in each pluggable database (PDB)
- Client secret operations:
 - Adding client secrets
 - Updating client secrets
 - Deleting client secrets

3.6 Configuring a Container Database with United Mode PDBs for Oracle Key Vault

The TDE master keys of all united mode PDBs and the CDB reside in the same virtual wallet in Oracle Key Vault.

- About Configuring a Container Database with United Mode PDBs for Oracle Key Vault
 - Oracle Key Vault is a fault-tolerant, scalable, and continuously available key and secrets management platform that was purpose-built for TDE master key management even for the largest, and most diverse, Oracle database deployments.
- About Configuring a Container Database with United Mode PDBs for Oracle Key Vault
 - In united mode, you can configure Oracle Key Vault by setting the WALLET_ROOT and TDE CONFIGURATION parameters in the container database (CDB).
- Step 1: Configure Oracle Key Vault for United Mode
 You can configure Oracle Key Vault for united mode PDBs by setting the
 WALLET_ROOT and TDE_CONFIGURATION parameters in the container database
 (CDB).

- Step 2: Open the Connection to Oracle Key Vault
 After you have configured the database to use Oracle Key Vault for TDE key
 management, you must open the connection to Oracle Key Vault before you can use it.
- Step 3: Set the TDE Master Encryption Key in Oracle Key Vault After you have opened the connection to Oracle Key Vault, you are ready to set the TDE master encryption key.
- Step 4: Encrypt Your Data in United Mode
 Now that you have completed the configuration for an external keystore or for an Oracle Key Vault keystore, you can begin to encrypt data.

3.6.1 About Configuring a Container Database with United Mode PDBs for Oracle Key Vault

Oracle Key Vault is a fault-tolerant, scalable, and continuously available key and secrets management platform that was purpose-built for TDE master key management even for the largest, and most diverse, Oracle database deployments.

External keystores are external to an Oracle database. Oracle Database can interface with external keystores but cannot manipulate them outside of the Oracle interface. The Oracle database can request the external keystore to create a key but it cannot define how this key is stored in an external database. Examples of external keystores are Oracle Key Vault keystores. Supported external keystores are Oracle Key Vault and the Oracle Cloud Infrastructure Vault. (Conversely, for TDE wallets that are created using TDE, Oracle Database has full control: that is, you can use SQL statements to manipulate this type of keystore.)

To configure an external keystore, you must first define the keystore type in the <code>TDE_CONFIGURATION</code> parameter setting, configure and open the external keystore, and then set the first TDE master encryption key in the external keystore. In short, there is one external keystore per database, and the database locates this keystore by checking the keystore type that you define in the <code>TDE_CONFIGURATION</code> parameter.

3.6.2 About Configuring a Container Database with United Mode PDBs for Oracle Key Vault

In united mode, you can configure Oracle Key Vault by setting the <code>WALLET_ROOT</code> and <code>TDE_CONFIGURATION</code> parameters in the container database (CDB).

Oracle recommends that you set the parameters <code>WALLET_ROOT</code> and <code>TDE_CONFIGURATION</code> for new deployments. Alternatively, you can migrate from the old configuration in the <code>sqlnet.orafile</code> to the new configuration with <code>WALLET_ROOT</code> and <code>TDE_CONFIGURATION</code> at your earliest convenience (for example, the next time you apply a quarterly bundle patch).

United Mode is the default TDE setup that is used in Oracle Database release 12.1.0.2 and later with the TDE configuration in sqlnet.ora. In Oracle Database release 18c and later, TDE configuration in sqlnet.ora is deprecated. You must first set the static initialization parameter WALLET_ROOT to an existing directory; for this change to be picked up, a database restart is necessary. After the restart, set the KEYSTORE_CONFIGURATION attribute of the dynamic TDE_CONFIGURATION parameter to OKV (for a password-protected connection into Oracle Key Vault), or OKV|FILE for an auto-open connection into Oracle Key Vault, and then open the configured external keystore, and then set the TDE master encryption keys. After you complete these tasks, you can begin to encrypt data in your database.

3.6.3 Step 1: Configure Oracle Key Vault for United Mode

You can configure Oracle Key Vault for united mode PDBs by setting the WALLET_ROOT and TDE CONFIGURATION parameters in the container database (CDB).

- 1. If the WALLET_ROOT parameter is set, then install the Oracle Key Vault client software into the WALLET ROOT/okv directory.
- 2. Log in to the database instance as a user who has been granted the ALTER SYSTEM administrative privilege.
- 3. Set the TDE_CONFIGURATION dynamic initialization parameter to specify the keystore type by using the following syntax:

```
ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=keystore_type" SCOPE=BOTH SID = '*';
```

In this specification:

keystore type is OKV, to configure an Oracle Key Vault keystore.

For example, to configure your database to use Oracle Key Vault:

```
ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=OKV" SCOPE=BOTH SID = '*";
```

3.6.4 Step 2: Open the Connection to Oracle Key Vault

After you have configured the database to use Oracle Key Vault for TDE key management, you must open the connection to Oracle Key Vault before you can use it.

- About Opening the Connection to Oracle Key Vault
 You must open the connection to Oracle Key Vault so that it is accessible to the
 database before you can perform any encryption or decryption.
- Opening the Oracle Key Vault Connection in a United Mode PDB
 To open the Oracle Key Vault connection in united mode, you must use the ADMINISTER KEY MANAGEMENT statement with the SET KEYSTORE OPEN clause.

3.6.4.1 About Opening the Connection to Oracle Key Vault

You must open the connection to Oracle Key Vault so that it is accessible to the database before you can perform any encryption or decryption.

If a recovery operation is needed on your database (for example, if the database was not cleanly shut down, and has an encrypted tablespace that needs recovery), then you must open the connection to Oracle Key Vault before you can open the database itself.

There are two ways that you can open the Oracle Key Vault connection:

- Manually open the keystore by issuing the ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN statement. Afterward, you can perform the operation.
- Include the FORCE KEYSTORE clause in the ADMINISTER KEY MANAGEMENT statement. FORCE KEYSTORE temporarily opens the keystore for the duration of the operation, and when the operation completes, the keystore is closed again. FORCE KEYSTORE is useful for situations when the database is heavily loaded. In this scenario,

because of concurrent access to encrypted objects in the database, the auto-login keystore continues to open immediately after it has been closed but before a user has had a chance to open the password-based keystore.

To check the status of the keystore, query the STATUS column of the V\$ENCRYPTION_WALLET view. Keystores can be in the following states: CLOSED, NOT_AVAILABLE (that is, not present in the WALLET ROOT location), OPEN, OPEN NO MASTER KEY, OPEN UNKNOWN MASTER KEY STATUS.

Be aware that for external keystores, if the database is in the mounted state, then it cannot check if the master key is set because the data dictionary is not available. In this situation, the status will be <code>OPEN_UNKNOWN_MASTER_KEY_STATUS</code>.

Related Topics

How Keystore Open and Close Operations Work in United Mode
 You should be aware of how keystore open and close operations work in united mode.

3.6.4.2 Opening the Oracle Key Vault Connection in a United Mode PDB

To open the Oracle Key Vault connection in united mode, you must use the ADMINISTER KEY MANAGEMENT statement with the SET KEYSTORE OPEN clause.

- 1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT OR SYSKM privilege.
- 2. Open the keystore in the CDB root by using the following syntax.

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN

IDENTIFIED BY EXTERNAL STORE | "Oracle_Key_Vault_password"

[CONTAINER = ALL | CURRENT];
```

In this specification:

- IDENTIFIED BY can be one of the following settings:
 - EXTERNAL STORE uses the keystore password stored in the external store to perform the keystore operation.
 - Oracle_Key_Vault_password is the Oracle Key Vault password that was giving
 during the Oracle Key Vault client installation. If no password was given, then the
 password in the ADMINISTER KEY MANAGEMENT statement becomes NULL. Enclose
 this password in double guotation marks.
- CONTAINER specifies the scope in which to open the Oracle Key Vault connection.
 - ALL opens the connection to Oracle Key Vault for the root container and all open united PDBs.
 - CURRENT opens the connection to Oracle Key Vault for the root container.

If the password contains a semi-colon (;), then enclose the password in double quotation marks.

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "Oracle Key Vault password";
```

- 3. Ensure that the PDB in which you want to open the keystore is in READ WRITE mode.
- **4.** Connect to the PDB and run the ADMINISTER KEY MANAGEMENT statement to open the keystore.

For example:


```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "external key manager password";
```

5. Confirm that the keystore is open.

```
SELECT STATUS FROM V$ENCRYPTION WALLET;
```

6. Repeat this procedure each time you restart the PDB.

3.6.5 Step 3: Set the TDE Master Encryption Key in Oracle Key Vault

After you have opened the connection to Oracle Key Vault, you are ready to set the TDE master encryption key.

- About Setting the External Keystore TDE Master Encryption Key
 You must create a TDE master encryption key that is stored inside the external
 keystore.
- Heartbeat Batch Size for External Keystores
 You can control the size of the batch of heartbeats issued during each heartbeat
 period.
- Setting the TDE Master Encryption Key for United Mode PDBs in an External Keystore

To set the TDE master encryption key in the keystore when the PDB is configured in united mode, use the <code>ADMINISTER KEY MANAGEMENT</code> statement with the <code>SET KEY</code> clause.

Migration of an Encrypted Database from a TDE Wallet to Oracle Key Vault or OCI KMS

To switch from a TDE wallet to centralized key management with Oracle Key Vault or Oracle Cloud Infrastructure (OCI) Key Management Service (KMS), after you upload all current and retired TDE master keys you must migrate the database from the TDE wallet to Oracle Key Vault or OCI KMS.

3.6.5.1 About Setting the External Keystore TDE Master Encryption Key

You must create a TDE master encryption key that is stored inside the external keystore.

Oracle Database uses the master encryption key from Oracle Key Vault or Oracle Cloud Infrastructure (OCI) Key Management Service (KMS) to encrypt or decrypt TDE table keys or tablespace encryption keys (data encryption keys) inside the database.

If you have not previously configured TDE with a wallet, then you must set the master encryption key in Oracle Key Vault or OCI KMS. If you have already configured TDE with a wallet, then you must migrate the database to Oracle Key Vault or OCI KMS.

Along with the current master encryption key, all TDE keystores (TDE wallet, Oracle Key Vault, and OCI KMS) maintain historical master encryption keys that are generated after every re-key operation that rekeys the master encryption key. These historical master keys help to restore Oracle Database backups that were taken previously using one of the master encryption keys. Only Oracle Key Vault allows you to upload all historical key from a TDE wallet before migrating the database to use Oracle Key Vault. After migration to Oracle Key Vault, the TDE wallet can be deleted, which satisfies security regulation that mandate that encryption keys cannot reside on the encrypting server.

3.6.5.2 Heartbeat Batch Size for External Keystores

You can control the size of the batch of heartbeats issued during each heartbeat period.

When a PDB is configured to use an external key manager, the GENO background process must perform a heartbeat request on behalf of the PDB to the external key manager. This background process ensures that the external key manager is available and that the TDE master encryption key of the PDB is available from the external key manager and can be used for both encryption and decryption. The GENO background process must complete this request within the heartbeat period (which defaults to three seconds).

When a very large number of PDBs (for example, 1000) are configured to use an external key manager, you can configure the <code>HEARTBEAT_BATCH_SIZE</code> database instance initialization parameter to batch heartbeats and thereby mitigate the possibility of the hang analyzer mistakenly flagging the <code>GENO</code> process as being stalled when there was not enough time for it to perform a heartbeat for each PDB within the allotted heartbeat period.

By setting the heartbeat batch size, you can stagger the heartbeats across batches of PDBs to ensure that for each batch a heartbeat can be completed for each PDB within the batch during the heartbeat period, and also ensure that PDB master encryption keys can be reliably fetched from an Oracle Key Vault server and cached in the Oracle Key Vault persistent cache. The HEARTBEAT_BATCH_SIZE parameter configures the size of the batch of heartbeats sent per heartbeat period to the external key manager. The value must be between 2 and 100 and it defaults to 5. The default duration of the heartbeat period is three seconds.

For example, if 500 PDBs are configured and are using Oracle Key Vault, the usual time taken by <code>GENO</code> to perform a heartbeat on behalf of a single PDB is less than half a second. In addition, assume that the <code>CDB\$ROOT</code> has been configured to use an external key manager such as Oracle Key Vault (<code>OKV</code>). Therefore, it should generally be possible to send five heartbeats (one for the <code>CDB\$ROOT</code> and four for a four-PDB batch) in a single batch within every three-second heartbeat period.

Even though the HEARTBEAT_BATCH_SIZE parameter configures the number of heartbeats sent in a batch, if the CDB\$ROOT is configured to use an external key manager, then each heartbeat batch must include a heartbeat for the CDB\$ROOT. The minimum value of the HEARTBEAT_BATCH_SIZE parameter is 2 and its maximum value is 100. When the CDB\$ROOT is configured to use an external key manager, then each batch of heartbeats includes one heartbeat for the CDB\$ROOT. This is why the minimum batch size is two: one must be reserved for the CDB\$ROOT, because it might be configured to use an external key manager.

For example, suppose you set the HEARTBEAT BATCH SIZE parameter as follows:

```
ALTER SYSTEM SET HEARTBEAT_BATCH_SIZE=3 SCOPE=BOTH SID='*';
```

Each iteration corresponds to one GENO three-second heartbeat period.

Example 1: Setting the Heartbeat for Containers That Are Configured to Use Oracle Key Vault

Suppose the container list is 1 2 3 4 5 6 7 8 9 10, with all containers configured to use Oracle Key Vault (OKV). The iterations are as follows:

- Iteration 1: batch consists of containers: 1 2 3
- Iteration 2: batch consists of containers: 1 4 5

- Iteration 3: batch consists of containers: 1 6 7
- Iteration 4: batch consists of containers: 1 8 9
- Iteration 5: batch consists of containers: 1 10
- Repeat this cycle.

Example 2: Setting the Heartbeat for Isolated PDBs with Different Keystores (Root Container in Oracle Key Vault)

In this example, the container list is 1 2 3 4 5 6 7 8 9 10, with only odd-numbered PDBs configured to use OKV, and the even-numbered PDBs configured to use a TDE wallet (FILE).

- Iteration 1: batch consists of containers: 1 3 5
- Iteration 2: batch consists of containers: 1 7 9
- Iteration 3: batch consists of containers: 1
- Repeat this cycle.

Example 3: Setting the Heartbeat for Isolated PDBs with Different Keystores (Root Container in TDE Wallet)

Assume that the container list is 1 2 3 4 5 6 7 8 9 10, with only even-numbered container numbers configured to use Oracle Key Vault, and the odd-numbered containers configured to use FILE. In the following example, there is no heartbeat for the CDB\$ROOT, because it is configured to use FILE.

- Iteration 1: batch consists of containers: 2 4 6
- Iteration 2: batch consists of containers: 8 10
- Repeat this cycle.

Related Topics

 Setting the TDE Master Encryption Key for United Mode PDBs in an External Keystore

To set the TDE master encryption key in the keystore when the PDB is configured in united mode, use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause.

Setting the TDE Master Encryption Key in the Isolated Mode External Keystore
You should complete this procedure if you have not previously configured an
external keystore for Transparent Data Encryption.

3.6.5.3 Setting the TDE Master Encryption Key for United Mode PDBs in an External Keystore

To set the TDE master encryption key in the keystore when the PDB is configured in united mode, use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause.

- 1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- **2. Ensure that the database is open in** READ WRITE **mode**.

You can set the master encryption key if <code>OPEN_MODE</code> is set to <code>READ WRITE</code>. To find the status, for a non-multitenant environment, query the <code>OPEN MODE</code> column of the

V\$DATABASE dynamic view. If you are in a multitenant environment, then run the show pdbs command.

3. To enable or disable in-memory caching of master encryption keys, set the TDE KEY CACHE initialization parameter.

This optional setting is only available for databases in Oracle Cloud Infrastructure (OCI) that use the OCI Key Management Service (KMS) for key management.

Enabling in-memory caching of master encryption keys helps to reduce the dependency on the OCI KMS during the decryption of data encryption keys. By having the master encryption key local to the database, you can improve the database availability by avoiding the failures that can happen because of intermittent network issues if the calls were made to the key server instead. A setting of TRUE enables in-memory caching; FALSE disables it.

```
ALTER SYSTEM SET TDE_KEY_CACHE = TRUE SCOPE=BOTH SID='*';
```

4. To configure the heartbeat batch size, set the <code>HEARTBEAT_BATCH_SIZE</code> initialization parameter.

The HEARTBEAT_BATCH_SIZE parameter configures the size of the "batch of heartbeats" sent per heartbeat period to the external key manager. Enter a value between 2 and 100. The default value is 5. The default duration of the heartbeat period is three seconds. By setting the heartbeat batch size, you can stagger the heartbeats across batches of PDBs to ensure that for each batch a heartbeat can be completed for each PDB within the batch during the heartbeat period, and also ensure that the TDE master encryption key of the PDB can be reliably fetched from an Oracle Key Vault server and cached in the Oracle Key Vault persistent cache. (See Heartbeat Batch Size for External Keystores for details about how HEARTBEAT BATCH SIZE works.)

```
ALTER SYSTEM SET HEARTBEAT BATCH SIZE=3 SCOPE=BOTH SID='*';
```

5. Run the ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY statement to set the TDE master encryption key in the keystore.

```
ADMINISTER KEY MANAGEMENT SET KEY
[USING TAG 'tag']
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | "external key manager password"];
```

In this specification:

- tag is the associated attributes and information that you define. Enclose this setting in single quotation marks (' ').
- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this operation. You must open the TDE wallet for this operation.
- IDENTIFIED BY can be one of the following settings:
 - EXTERNAL STORE uses the keystore password stored in the external store to perform the keystore operation.
 - external_key_manager_password is for an external keystore manager, which can be Oracle Key Vault or OCI Vault - Key Management. Enclose this password in double quotation marks. For Oracle Key Vault, enter the password that was given during the Oracle Key Vault client installation. If at that time no password was

given, then the password in the ADMINISTER KEY MANAGEMENT statement becomes NULL.

For example:

```
ADMINISTER KEY MANAGEMENT SET KEY
FORCE KEYSTORE
IDENTIFIED BY "external_key_manager_password";
keystore altered.
```

6. Confirm that the TDE master encryption key is set.

```
SELECT MASTERKEY_ACTIVATED FROM V$DATABASE_KEY_INFO;
```

The output should be YES.

3.6.5.4 Migration of an Encrypted Database from a TDE Wallet to Oracle Key Vault or OCI KMS

To switch from a TDE wallet to centralized key management with Oracle Key Vault or Oracle Cloud Infrastructure (OCI) Key Management Service (KMS), after you upload all current and retired TDE master keys you must migrate the database from the TDE wallet to Oracle Key Vault or OCI KMS.

Tools such as Oracle Data Pump and Oracle Recovery Manager require access to the old TDE wallet to perform decryption and encryption operations on data exported or backed up using the TDE wallet. Along with the current master encryption key, Oracle keystores maintain historical master encryption keys that are generated after every rekey operation that rotates the master encryption key. These historical master encryption keys help to restore Oracle database backups that were taken previously using one of the historical master encryption keys.

Related Topics

Migrating from a TDE Wallet to Oracle Key Vault
 You can migrate between password-protected TDE wallets and external keystores
 in Oracle Key Vault.

3.6.6 Step 4: Encrypt Your Data in United Mode

Now that you have completed the configuration for an external keystore or for an Oracle Key Vault keystore, you can begin to encrypt data.

Related Topics

Encrypting Columns in Tables

You can use Transparent Data Encryption to encrypt individual columns in database tables.

- Encryption Conversions for Tablespaces and Databases
 You can perform encryption operations on both offline and online tablespaces and databases.
- Oracle Key Vault Administrator's Guide

4

Configuring Isolated Mode

Isolated mode enables you to create a keystore for each pluggable database (PDB).

- About Configuring Isolated Mode
 In isolated mode, where a pluggable database (PDB) has its own keystore and keystore password, you manage the keystore and its TDE master encryption keys from the PDB only.
- Operations That Are Allowed in Isolated Mode
 You can perform many ADMINISTER KEY MANAGEMENT operations in isolated mode.
- Operations That Are Not Allowed in an Isolated Mode PDB
 There are several ADMINISTER KEY MANAGEMENT operations that you cannot perform in an isolated mode PDB.
- Configuring the Keystore Location and Type for Isolated Mode
 For isolated mode, you can configure the keystore location and type by using only parameters or a combination of parameters and the ALTER SYSTEM statement.
- Configuring a TDE Wallet and TDE Master Encryption Key in Isolated Mode
 In isolated mode, the TDE wallet is associated with a PDB.
- Configuring a Container Database with Isolated Mode PDBs for Oracle Key Vault
 Isolated PDBs have their own virtual wallet, with their own password, in Oracle Key Vault.

4.1 About Configuring Isolated Mode

In isolated mode, where a pluggable database (PDB) has its own keystore and keystore password, you manage the keystore and its TDE master encryption keys from the PDB only.

Similar to united mode, you must first configure a PDB to use isolated mode by setting the WALLET_ROOT and TDE_CONFIGURATION parameters. After you set these parameters, you can create and manage the keystore from the PDB. In this way, you can have the following scenario:

- United mode PDBs inherit the TDE configuration from the root container. For example, the keystore that you create in the CDB root will be used by the root's associated united mode PDBs.
- The PDBs that are configured in isolated mode are allowed to independently create and manage their own keystore. An isolated mode PDB can have its own keystore, independent of the keystore of the CDB root.

This scenario is useful in cases where you have many PDBs that must use one type of keystore, but you have a few PDBs that must use a different type. By different types of keystores, this refers to either TDE wallet or to one of the external keystores that Oracle supports (for example, Oracle Key Vault or Cloud Key Management Service). You cannot have a mixture of different external keystore types in one CDB environment because the Oracle server can load only one PKCS#11 vendor library. If necessary, you can configure these PDBs in isolated mode so that each PDB can use its own keystore.

Note:

Oracle Cloud Infrastructure (OCI) cloud tooling does not support isolated PDBs. This non-support applies to Oracle Base Database Service (BaseDB), ExaDB-D, ExaDB-D@Azure, ExaDB-C@C, ADB-C@C, even when Oracle Key Vault provides key management for those database deployments.

4.2 Operations That Are Allowed in Isolated Mode

You can perform many ADMINISTER KEY MANAGEMENT operations in isolated mode.

These operations include creating, backing up, opening keystores; changing keystore passwords, merging keystores, closing keystores; creating, activating, tagging, moving, exporting, importing, and migrating encryption keys; and adding, updating, and deleting client secrets.

Table 4-1 describes the ADMINISTER KEY MANAGEMENT operations that you can perform in an isolated mode PDB.

Table 4-1 ADMINISTER KEY MANAGEMENT Isolated Mode Operations

Operation	Syntax	Notes
Creating a keystore	ADMINISTER KEY MANAGEMENT CREATE KEYSTORE IDENTIFIED BY isolated_PDB_keystore_password;	You can create password- protected, local auto-login, and auto-login keystores in an isolated mode PDB.
Creating an auto-login keystore	ADMINISTER KEY MANAGEMENT CREATE [LOCAL] AUTO_LOGIN KEYSTORE FROM KEYSTORE IDENTIFIED BY isolated_PDB_keystore_password;	The isolated PDB knows the keystore location of both password protected and (local) auto-open wallet from <code>WALLET_ROOT/pdb_guid/tde</code> .
Opening a keystore	ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN [FORCE KEYSTORE] IDENTIFIED BY EXTERNAL STORE isolated_PDB_keystore_passw ord;	The EXTERNAL_STORE clause retrieves the isolated mode PDB keystore password from a wallet in the tde_seps directory in the WALLET_ROOT/PDB-GUID location.

Table 4-1 (Cont.) ADMINISTER KEY MANAGEMENT Isolated Mode Operations

Operation	Syntax	Notes
Changing a keystore password	ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD IDENTIFIED BY old_isolated_PDB_keystore_p assword SET new_isolated_PDB_keystore_p assword WITH BACKUP [USING 'backup_identifier'];	-
Backing up a TDE wallet	ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE [USING 'backup_identifier'] IDENTIFIED BY EXTERNAL STORE TDE_wallet_password] [TO 'TDE_wallet_backup_location '];	-
Merging the contents of one keystore into an existing keystore	ADMINISTER KEY MANAGEMENT MERGE KEYSTORE 'keystore1_location' [IDENTIFIED BY TDE_wallet1_password] INTO EXISTING KEYSTORE 'keystore2_location' IDENTIFIED BY TDE_wallet2_password WITH BACKUP [USING 'backup_identifier'];	-
Merging the contents of two keystores to create a third keystore	ADMINISTER KEY MANAGEMENT MERGE KEYSTORE 'keystore1_location' [IDENTIFIED BY TDE_wallet1_password] AND KEYSTORE 'keystore2_password' [IDENTIFIED BY TDE_wallet2_password] INTO NEW KEYSTORE 'keystore3_location' IDENTIFIED BY TDE_wallet3_password;	

Table 4-1 (Cont.) ADMINISTER KEY MANAGEMENT Isolated Mode Operations

Operation	Syntax	Notes
Closing a keystore	ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE [IDENTIFIED BY [EXTERNAL STORE keystore_password]];	-
Closing the keystore of the CDB root when a PDB in isolated mode has its keystore open	ADMINISTER KEY MANAGEMENT FORCE KEYSTORE CLOSE [IDENTIFIED BY [EXTERNAL STORE keystore_password]];	The FORCE clause allows the keystore to be closed in the CDB root even when a PDB in isolated mode still has its keystore open
Creating and activating a new TDE master encryption key (rekeying)	ADMINISTER KEY MANAGEMENT SET [ENCRYPTION] KEY [USING TAG 'tag_name'] [FORCE KEYSTORE] IDENTIFIED BY [EXTERNAL STORE keystore_password]WITH BACKUP [USING 'backup_identifier'];	
Creating a user-defined TDE master encryption key for either now (SET) or later on (CREATE)	ADMINISTER KEY MANAGEMENT SET CREATE [ENCRYPTION] KEY 'mkid:mk mk' [USING ALGORITHM 'algorithm'] [FORCE KEYSTORE] [USING TAG 'tag_name'] IDENTIFIED BY EXTERNAL STORE TDE_wallet_password WITH BACKUP [USING 'backup_identifier'] [CONTAINER = CURRENT];	
Activating an existing TDE master encryption key	ADMINISTER KEY MANAGEMENT USE [ENCRYPTION] KEY 'key_id' [USING TAG 'tag'] IDENTIFIED BY [EXTERNAL STORE keystore_password] WITH BACKUP [USING 'backup_identifier'];	

Table 4-1 (Cont.) ADMINISTER KEY MANAGEMENT Isolated Mode Operations

Operation	Syntax	Notes
Tagging a TDE master encryption key	ADMINISTER KEY MANAGEMENT SET TAG 'tag' FOR 'key_id' IDENTIFIED BY [EXTERNAL STORE keystore_password] WITH BACKUP [USING 'backup_identifier'];	-
Exporting a TDE master encryption key	ADMINISTER KEY MANAGEMENT EXPORT [ENCRYPTION] KEYS WITH SECRET secret TO 'filename' IDENTIFIED BY TDE_wallet_password [WITH IDENTIFIER IN { 'key_id' [, 'key_id'] (subquery) }];	
Importing a TDE master encryption key	ADMINISTER KEY MANAGEMENT IMPORT [ENCRYPTION] KEYS WITH SECRET secret FROM 'filename' IDENTIFIED BY TDE_wallet_password WITH BACKUP [USING 'backup_identifier'];	
Migrating an encrypted database from a TDE wallet to Oracle Key Vault	ADMINISTER KEY MANAGEMENT SET [ENCRYPTION] KEY IDENTIFIED BY Oracle_Key_Vault_password [FORCE KEYSTORE] MIGRATE USING TDE_wallet_password;	-
Reverse-migrating an encrypted database from an external keystore to a TDE wallet	ADMINISTER KEY MANAGEMENT SET [ENCRYPTION] KEY IDENTIFIED BY TDE_wallet_password REVERSE MIGRATE USING Oracle_Key_Vault_password;	-

Table 4-1 (Cont.) ADMINISTER KEY MANAGEMENT Isolated Mode Operations

Operation	Syntax	Notes
Adding a client secret	ADMINISTER KEY MANAGEMENT ADD SECRET 'secret' FOR CLIENT 'client_identifier' [USING TAG 'tag_name'] IDENTIFIED BY [EXTERNAL STORE keystore_password] WITH BACKUP [USING 'backup_identifier'];	-
Updating a client secret	ADMINISTER KEY MANAGEMENT UPDATE SECRET 'secret' FOR CLIENT 'client_identifier' [USING TAG 'tag_name'] IDENTIFIED BY [EXTERNAL STORE keystore_password] WITH BACKUP [USING 'backup_identifier'];	
Deleting a client secret	ADMINISTER KEY MANAGEMENT DELETE SECRET FOR CLIENT 'client_identifier IDENTIFIED BY [EXTERNAL STORE keystore_password] WITH BACKUP [USING 'backup_identifier'];	-
Isolating a PDB	ADMINISTER KEY MANAGEMENT ISOLATE KEYSTORE IDENTIFIED BY isolated_keystore_password FROM ROOT KEYSTORE [FORCE KEYSTORE] IDENTIFIED BY [EXTERNAL STORE united_keystore_password] WITH BACKUP [USING backup_id];	This operation performs two actions. First, it changes the TDE_CONFIGURATION of the PDB so that it is in isolated mode. Second, it moves the PDB's current and previously active TDE master encryption keys from the root keystore to a newly-created isolated keystore of the PDB, having its own isolated keystore password, where the PDB will be able to manage its own keys.

4.3 Operations That Are Not Allowed in an Isolated Mode PDB

There are several ADMINISTER KEY MANAGEMENT operations that you cannot perform in an isolated mode PDB.

These operations include the following:

- Using the CONTAINER = ALL clause to create a new TDE master encryption key for later use in each pluggable database (PDB)
- Moving encryption keys from the keystore of the CDB root into a keystore of a PDB that is configured in isolated mode

4.4 Configuring the Keystore Location and Type for Isolated Mode

For isolated mode, you can configure the keystore location and type by using only parameters or a combination of parameters and the ALTER SYSTEM statement.

- About Configuring the Keystore Location and Type for Isolated Mode
 Configuring the WALLET_ROOT and TDE_CONFIGURATION parameters for the CDB
 environment is similar to the procedure used for united mode.
- Configuring the Keystore Location and Keystore Type for an Isolated Mode PDB
 You can configure isolated mode by setting WALLET_ROOT in the initialization parameter file
 in the CDB root and TDE CONFIGURATION in the PDB you want to isolate.
- Example: Restoring an Older Version of a Control File
 You can set TDE_CONFIGURATION if you have an older version of a control file that must be restored and only a few PDBs were configured in isolated mode.
- Example: Addressing the Problem of a Lost Control File

 You can address the problem of a lost control file by using the ALTER SYSTEM statement.
- Example: Configuring Isolated Mode in an Oracle Real Application Clusters Environment You can use ALTER SYSTEM to configure isolated mode in an Oracle Real Application Clusters (Oracle RAC) environment.

4.4.1 About Configuring the Keystore Location and Type for Isolated Mode

Configuring the WALLET_ROOT and TDE_CONFIGURATION parameters for the CDB environment is similar to the procedure used for united mode.

The difference is that rather than using the RESET clause of the ALTER SYSTEM statement, you use the SET clause. You can perform the configuration by adding the WALLET_ROOT and TDE_CONFIGURATION parameters to the initialization parameter file. To configure a PDB in isolated mode, you must set a value for the TDE_CONFIGURATION parameter of the PDB, which you can do either by using the ALTER SYSTEM statement or by issuing the ADMINISTER KEY MANAGEMENT ISOLATE KEYSTORE statement. This section focuses on the use of the ALTER SYSTEM statement.

Depending on whether your system uses pfile or spfile, you must set the SCOPE clause in the ALTER SYSTEM statement appropriately when setting the value of the TDE_CONFIGURATION parameter for the PDB. The value of the TDE CONFIGURATION parameter is a list of attribute-

value pairs, and it is the value of the $\texttt{KEYSTORE_CONFIGURATION}$ attribute that specifies the type of the keystore, as follows:

- FILE specifies a TDE wallet.
- OKV specifies Oracle Key Vault.
- FILE | OKV specifies a reverse-migration from the OKV keystore type to the FILE keystore type has occurred.
- FILE | HSM specifies a reverse-migration from the HSM keystore type to the FILE keystore type has occurred.
- OKV|FILE specifies a migration from the FILE keystore type to the OKV keystore type has occurred. The keystore type has two meanings: it either means that you are migrating from FILE to OKV, or it means that the configuration started out as using OKV but is now using an auto-login OKV configuration, where the OKV password resides in a cwallet.sso file in the WALLET_ROOT/pdb_guid/tde directory.

After you have used ALTER SYSTEM to configure the TDE_CONFIGURATION value for the selected PDB, the PDB in the CDB environment is in isolated mode. The steps in this procedure explain in detail how to configure an individual PDB to be in isolated mode, using its own keystore type.

4.4.2 Configuring the Keystore Location and Keystore Type for an Isolated Mode PDB

You can configure isolated mode by setting WALLET_ROOT in the initialization parameter file in the CDB root and TDE CONFIGURATION in the PDB you want to isolate.

1. In the root, ensure that the WALLET ROOT parameter is set correctly.

For example:

```
SHOW PARAMETER WALLET ROOT
```

2. As a user who has the ADMINISTER KEY MANAGEMENT or SYSKM privilege, run the following statement in the PDB:

```
ADMINISTER KEY MANAGEMENT CREATE KEYSTORE IDENTIFIED BY "iso PDB TDE wallet password";
```

This statement does the following:

- Sets the TDE CONFIGURATION in the isolated PDB to FILE.
- Creates the directories pdb guid/tde under WALLET ROOT.
- Creates a new TDE wallet with its own password (which might be not known to the CDB administrator).
- 3. Check the configuration.
 - To check the TDE CONFIGURATION parameter setting in the isolated PDB:

```
SHOW PARAMETER TDE CONFIGURATION
```

The output should reflect the keystore configuration that you set for the current PDB. If it shows a different keystore configuration (for example, FILE if you

had set it to OKV), then the setting may be showing the keystore configuration that was set for the CDB root, in united mode.

To check the keystore mode:

```
SELECT KEYSTORE MODE FROM V$ENCRYPTION WALLET;
```

The output should be ISOLATED.

After you configure isolated mode, the CDB root keystore that was available to the PDB when it was in united mode is no longer available to this PDB. At this stage, the PDB is configured to use its own keystore. If the KEYSTORE_CONFIGURATION parameter was FILE (meaning that the PDB is configured to use a TDE wallet), then the keystore location configured for the PDB is WALLET_ROOT/PDB-GUID/tde. If a keystore exists at that location and contains a TDE master encryption key, then that key is only available to this PDB, not to any other PDB. If no keystore exists at that location, you now can now proceed to create a TDE wallet and set a TDE master encryption key. If you later decide that you want the isolated mode PDB to become a united mode PDB again, then you can use the ADMINISTER KEY MANAGEMENT UNITE KEYSTORE statement. When you run ADMINISTER KEY MANAGEMENT UNITE KEYSTORE, it moves the keys from the PDB's keystore to the keystore of the CDB root, but it leaves any client secrets behind. So if there were no client secrets in the first place, then it would leave the PDB's keystore essentially "empty". It can now be backed up, and removed. Always back up keystores before you remove them, even empty keystores.

Related Topics

- Configuring United Mode with the Initialization Parameter File and ALTER SYSTEM If your environment relies on server parameter files (spfile), then you can set WALLET ROOT and TDE CONFIGURATION using ALTER SYSTEM SET with SCOPE.
- Uniting a Pluggable Database Keystore
 Uniting a PDB keystore moves the TDE master encryption keys from the PDB keystore into the keystore of the CDB root. This enables the administrator of the keystore of the CDB root to manage the keys.
- Example: Configuring a TDE Wallet When Multiple Databases Share the Same Host You can configure multiple databases to share the same host by setting the WALLET_ROOT parameter.
- Example: Configuring a TDE Wallet for an Oracle Automatic Storage Management Disk Group
 In an Oracle Real Applications Clusters (Oracle RAC) environment, the WALLET ROOT.

In an Oracle Real Applications Clusters (Oracle RAC) environment, the WALLET_ROOT parameter points to a shared directory in Oracle Automatic Storage Management (ASM) that is accessible from all Oracle RAC instances of that database.

4.4.3 Example: Restoring an Older Version of a Control File

You can set TDE_CONFIGURATION if you have an older version of a control file that must be restored and only a few PDBs were configured in isolated mode.

When the CDB root and the PDB are both in the mount state, then you can only change the PDB's keystore configuration from the CDB root.

- 1. Log in to the CDB root as a user who was granted the SYSDBA administrative privilege.
- 2. For each PDB that you want to change, use the following syntax:

```
ALTER SYSTEM SET

TDE_CONFIGURATION="CONTAINER=pdb_name; KEYSTORE_CONFIGURATION=keystore_type"
SCOPE=memory;
```


For example, for the hrpdb and salespdb PDBs using FILE (for TDE wallets) as the keystore type:

```
ALTER SYSTEM SET

TDE_CONFIGURATION="CONTAINER=hrpdb; KEYSTORE_CONFIGURATION=FILE" SCOPE=memory;
ALTER SYSTEM SET

TDE_CONFIGURATION="CONTAINER=salespdb; KEYSTORE_CONFIGURATION=FILE"

SCOPE=memory;
```

3. After you set the TDE_CONFIGURATION parameter for each PDB, log in to the CDB root and then set TDE CONFIGURATION for the CDB root itself.

```
ALTER SYSTEM SET TDE CONFIGURATION="KEYSTORE CONFIGURATION=FILE";
```

At this stage, CDB root is in the mounted state. The value of the <code>TDE_CONFIGURATION</code> parameter that was set using <code>ALTER SYSTEM</code> with the <code>CONTAINER</code> attribute is only present in the memory of the CDB root. To ensure that the configuration is properly applied to each PDB, you must close and then reopen the PDB. When an isolated mode PDB is opened, the configuration set by the <code>ALTER SYSTEM</code> statement that was issued in the CDB root is read from the control file and then is automatically applied to the PDB.

4. Connect to each PDB and then close and reopen the PDB.

```
ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE; ALTER PLUGGABLE DATABASE pdb name OPEN;
```

4.4.4 Example: Addressing the Problem of a Lost Control File

You can address the problem of a lost control file by using the ${\tt ALTER}\ {\tt SYSTEM}$ statement.

Running these statements with SCOPE set to memory will store the CONTAINER value in memory. When you open the isolated PDB, this configuration will automatically be updated for the PDB.

If you are using an Oracle Data Guard environment, then to correct the control file, run these statements on both the primary and the standby databases.

- 1. Log in to the CDB root as a user who was granted the SYSDBA administrative privilege.
- 2. If you are unsure of the exact state of the system, then you should run ALTER SYSTEM with RESET.

For example:

```
ALTER SYSTEM RESET TDE CONFIGURATION SCOPE=memory;
```

3. For each PDB that you want to change, use the following syntax:

```
ALTER SYSTEM SET

TDE_CONFIGURATION="CONTAINER=pdb_name; KEYSTORE_CONFIGURATION=FILE"

SCOPE=memory;
```

For example, for the hrpdb and salespdb PDBs with FILE (for TDE wallets) as the keystore type:

```
ALTER SYSTEM SET

TDE_CONFIGURATION="CONTAINER=hrpdb; KEYSTORE_CONFIGURATION=FILE"
SCOPE=memory;
ALTER SYSTEM SET
```



```
TDE CONFIGURATION="CONTAINER=salespdb; KEYSTORE CONFIGURATION=FILE" SCOPE=memory;
```

4. After you set the TDE_CONFIGURATION parameter for each PDB, log in to the CDB root and then set TDE CONFIGURATION for the CDB root itself.

```
ALTER SYSTEM SET TDE CONFIGURATION="KEYSTORE CONFIGURATION=FILE";
```

At this stage, CDB root is in the mounted state. The value of the <code>TDE_CONFIGURATION</code> parameter that was set using <code>ALTER SYSTEM</code> with the <code>CONTAINER</code> attribute is only present in the memory of the CDB root. To ensure that the configuration is properly applied to each PDB, you must close and then reopen the PDB. When an isolated mode PDB is opened, the configuration set by the <code>ALTER SYSTEM</code> statement that was issued in the CDB root is read from the control file and then is automatically applied to the PDB.

5. Connect to each PDB and then close and reopen the PDB.

```
ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE; ALTER PLUGGABLE DATABASE pdb name OPEN;
```

4.4.5 Example: Configuring Isolated Mode in an Oracle Real Application Clusters Environment

You can use ALTER SYSTEM to configure isolated mode in an Oracle Real Application Clusters (Oracle RAC) environment.

To ensure that the effect of the ALTER SYSTEM statement is applied on each Oracle RAC node, specify the wildcard (*) in the SID clause of the ALTER SYSTEM statement, as follows. You can run this statement from either the CDB root or a PDB.

```
ALTER SYSTEM SET TDE CONFIGURATION="KEYSTORE CONFIGURATION=keystore type" SID='*';
```

4.5 Configuring a TDE Wallet and TDE Master Encryption Key in Isolated Mode

In isolated mode, the TDE wallet is associated with a PDB.

- About Configuring a TDE Wallet in Isolated Mode
 You can create all types of TDE wallets in isolated mode: password-protected, password
 protected with the credential provided from an external store, auto-login, local auto-login.
- Step 1: Create a TDE Wallet in a PDB Configured in Isolated Mode
 A password-protected TDE wallet requires a password to protect the keystore keys and credentials.
- Step 2: Open the TDE Wallet in an Isolated Mode PDB

 To open a TDE wallet in isolated mode, you must use the ADMINISTER KEY MANAGEMENT statement with the SET KEYSTORE OPEN clause.
- Step 3: Set the TDE Master Encryption Key in the TDE Wallet of the Isolated Mode PDB To set the TDE master encryption key in a TDE wallet in an isolated mode PDB, use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause.
- Step 4: Encrypt Your Data in Isolated Mode
 Now that you have completed the configuration, you can begin to encrypt data in the PDB.

4.5.1 About Configuring a TDE Wallet in Isolated Mode

You can create all types of TDE wallets in isolated mode: password-protected, password protected with the credential provided from an external store, auto-login, local auto-login.

To enable encryption in the PDB after it is configured in isolated mode with the KEYSTORE_CONFIGURATION attribute set to FILE (that is, to use a TDE wallet), you must create a TDE wallet, open the TDE wallet, and then set a TDE master encryption key in the TDE wallet. Afterward, you can begin to encrypt data for tables and tablespaces that will be accessible in the PDB.

In a multitenant environment, you can create a secure external store to hold the credentials of the TDE wallet. This feature enables you to hide the keystore password: it removes the need for storing the wallet password in any script or tool that accesses the database without user intervention, such as an overnight batch script. When the WALLET_ROOT parameter is specified, the location of the external store for the CDB root is WALLET_ROOT/tde_seps and for the PDB it is WALLET_ROOT/pdb_guid/tde_seps. When the WALLET_ROOT parameter is set, there is no longer a single central external store, so when a keystore password is updated, the corresponding external store must be updated as well. When the WALLET_ROOT parameter is not specified, then the location of the external store is the same for both the CDB root and for every PDB. The external store location must then be set by the

EXTERNAL_KEYSTORE_CREDENTIAL_LOCATION initialization parameter. When the WALLET_ROOT parameter is not specified, then there is a single central external store, so when you update the keystore password, only the central external store at the EXTERNAL KEYSTORE CREDENTIAL LOCATION must be updated.

In a multitenant environment, different PDBs can access this external store location when you run the <code>ADMINISTER KEY MANAGEMENT</code> statement using the <code>IDENTIFIED BY EXTERNAL STORE</code> clause. This way, you can centrally locate the password and then update it only once in the external store.

Related Topics

Configuring an External Store for a Keystore Password
 An external store for a keystore password stores the keystore password in a centrally accessed and managed location.

4.5.2 Step 1: Create a TDE Wallet in a PDB Configured in Isolated Mode

A password-protected TDE wallet requires a password to protect the keystore keys and credentials.

- 1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Use the Show parameter command to confirm that wallet_root is set, and TDE CONFIGURATION is set to KEYSTORE CONFIGURATION=FILE.
- 3. Run the ADMINISTER KEY MANAGEMENT SQL statement to create the TDE wallet using the following syntax:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE IDENTIFIED BY TDE wallet password;

This command creates the /tde directory under WALLET_ROOT/ pdb_guid (unless it already exists), and creates a password-protected TDE wallet in this directory. If WALLET_ROOT points to a shared directory in ASM (+DATA/DB_UNIQUE_NAME), then the pdb_guid /tde subdirectory and the TDE wallet is auto-created by the CREATE KEYSTORE statement.

In this specification, <code>TDE_wallet_password</code> is the password of the TDE wallet that you, the security administrator, creates.

For example, to create the TDE wallet in the WALLET ROOT/pdb guid/tde directory:

```
ADMINISTER KEY MANAGEMENT CREATE KEYSTORE IDENTIFIED BY password;
```

keystore altered.

After you complete these steps, the <code>ewallet.p12</code> file, which is the TDE wallet, appears in the TDE wallet location.

Related Topics

Creating an Auto-Login or a Local Auto-Login TDE Wallet
 As an alternative to password-protected TDE wallets, you can create either an auto-login or local auto-login TDE wallet.

4.5.3 Step 2: Open the TDE Wallet in an Isolated Mode PDB

To open a TDE wallet in isolated mode, you must use the ADMINISTER KEY MANAGEMENT statement with the SET KEYSTORE OPEN clause.

- 1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Run the ADMINISTER KEY MANAGEMENT statement to open the TDE wallet.

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY TDE_wallet_password | EXTERNAL STORE;
```

Keystore altered.

To switch over to opening the password-protected TDE wallet when an auto-login wallet is configured and is currently open, specify the FORCE KEYSTORE clause as follows.

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN FORCE KEYSTORE

IDENTIFIED BY TDE_wallet_password | EXTERNAL STORE;

Keystore altered.
```

Here, the IDENTIFIED BY EXTERNAL STORE clause is included in the statement because the wallet credentials exist in an external store. This enables the password-protected TDE wallet to be opened without specifying the TDE wallet password within the statement itself.

If the WALLET_ROOT parameter has been set, then Oracle Database finds the external store by searching in this path: $WALLET\ ROOT/pdb\ guid/tde\ seps.$

3. Confirm that the TDE wallet is open.

SELECT STATUS FROM V\$ENCRYPTION WALLET;

Related Topics

About Opening TDE Wallets
 A password-protected TDE wallet must be open before any TDE master encryption keys can be created or accessed in the wallet.

4.5.4 Step 3: Set the TDE Master Encryption Key in the TDE Wallet of the Isolated Mode PDB

To set the TDE master encryption key in a TDE wallet in an isolated mode PDB, use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause.

- 1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- **2. Ensure that the database is open in** READ WRITE **mode**.

To find the status, run the show pdbs command.

3. Run the ADMINISTER KEY MANAGEMENT SQL statement to set the key in the TDE wallet.

For example, if the TDE wallet of the PDB is password-protected, the PDB is open, and the TDE wallet of the PDB is open:

```
ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY TDE_wallet_password WITH BACKUP USING 'emp_key_backup'; keystore altered.
```

If the TDE wallet is closed:

```
ADMINISTER KEY MANAGEMENT SET KEY FORCE KEYSTORE IDENTIFIED BY TDE_wallet_password WITH BACKUP USING 'emp_key_backup';
```

In this specification:

keystore altered.

- FORCE KEYSTORE should be included if the TDE wallet is closed. This
 automatically opens the TDE wallet before setting the TDE master encryption
 key. The FORCE KEYSTORE clause also switches over to opening the passwordprotected TDE wallet when an auto-login TDE wallet is configured and is
 currently open.
- IDENTIFIED BY specifies the TDE wallet password. Alternatively, if the TDE wallet password is in an external store, you can use the IDENTIFIED BY EXTERNAL STORE clause.
- 4. Confirm that the TDE master encryption key is set.

```
SELECT MASTERKEY ACTIVATED FROM V$DATABASE KEY INFO;
```

The output should be YES.

Related Topics

About Setting the TDE Wallet TDE Master Encryption Key
 The TDE master encryption key is stored in the TDE wallet.

4.5.5 Step 4: Encrypt Your Data in Isolated Mode

Now that you have completed the configuration, you can begin to encrypt data in the PDB.

Related Topics

- Encrypting Columns in Tables
 You can use Transparent Data Encryption to encrypt individual columns in database
 tables
- Encryption Conversions for Tablespaces and Databases
 You can perform encryption operations on both offline and online tablespaces and databases

4.6 Configuring a Container Database with Isolated Mode PDBs for Oracle Key Vault

Isolated PDBs have their own virtual wallet, with their own password, in Oracle Key Vault.

- About Configuring an External Keystore in Isolated Mode
 You can configure an external keystore for a PDB when the PDB is configured in isolated
 mode.
- Step 1: Configure Isolated PDBs for Oracle Key Vault
 You can configure isolated mode PDBs for Oracle Key Vault by setting the
 TDE_CONFIGURATION parameter.
- Step 2: Open the Isolated Mode PDB External Keystore
 If the isolated PDB does not have an auto-open connection into the external keystore,
 then you must open it manually before your open the PDB.
- Step 3: Set the First TDE Master Encryption Key in the External Keystore
 After you have opened the external keystore in an isolated mode PDB, you are ready to
 set the TDE master encryption key for the PDB.
- Step 4: Encrypt Your Data in Isolated Mode

 Now that you have completed the keystore configuration and the PDB is configured in isolated mode, you can begin to encrypt data in the PDB.

4.6.1 About Configuring an External Keystore in Isolated Mode

You can configure an external keystore for a PDB when the PDB is configured in isolated mode.

To configure an external keystore for a PDB in isolated mode, you first must set the WALLET_ROOT parameter. This is necessary for two reasons: first, to have support for migrating to a TDE wallet in the future, and second, because the configuration file for Oracle Key Vault is retrieved from a location under WALLET_ROOT. Afterwards, you must set the KEYSTORE_CONFIGURATION attribute of the TDE_CONFIGURATION parameter to OKV, open the configured external keystore, and then set the TDE master encryption key for the PDB. After you complete these tasks, you can begin to encrypt data in your database.

How you specify the IDENTIFIED BY clause when you run the ADMINISTER KEY MANAGEMENT statement depends on the type of external keystore. Use the following syntax:

```
IDENTIFIED BY EXTERNAL STORE | Oracle Key Vault password
```

Enter the Oracle Key Vault password that was given during the Oracle Key Vault client installation. If at that time no password was given, then the password in the ADMINISTER KEY MANAGEMENT statement becomes NULL.

4.6.2 Step 1: Configure Isolated PDBs for Oracle Key Vault

You can configure isolated mode PDBs for Oracle Key Vault by setting the TDE CONFIGURATION parameter.

- 1. If the WALLET_ROOT parameter is set, then install the Oracle Key Vault client software into the WALLET ROOT/pdb guid/okv directory.
- 2. Log in to the database instance as a user who has been granted the ALTER SYSTEM administrative privilege.
- 3. Set the TDE_CONFIGURATION dynamic initialization parameter to specify the keystore type by using the following syntax:

```
ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=keystore_type" SCOPE=BOTH SID = '*';
```

In this specification:

• keystore_type can be OKV, to configure a password-protected Oracle Key Vault keystore, or OKV|TDE for an auto-open connection into Oracle Key Vault.

For example, to configure your database to use Oracle Key Vault:

```
ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=OKV" SCOPE=BOTH SID = '*';
```

4.6.3 Step 2: Open the Isolated Mode PDB External Keystore

If the isolated PDB does not have an auto-open connection into the external keystore, then you must open it manually before your open the PDB.

- 1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Open the external keystore as follows, by enclosing the password in double quotation marks:

For example:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "Oracle Key Vault password" | EXTERNAL STORE;
```

3. Repeat this procedure each time you restart the database instance.

You must open the keystore of the CDB root first.

Related Topics

• About Opening the Connection to Oracle Key Vault
You must open the connection to Oracle Key Vault so that it is accessible to the database
before you can perform any encryption or decryption.

4.6.4 Step 3: Set the First TDE Master Encryption Key in the External Keystore

After you have opened the external keystore in an isolated mode PDB, you are ready to set the TDE master encryption key for the PDB.

- Setting the TDE Master Encryption Key in the Isolated Mode External Keystore
 You should complete this procedure if you have not previously configured an external
 keystore for Transparent Data Encryption.
- Migration of a Previously Configured Encryption Key in Isolated Mode
 You must migrate the previously configured master encryption key if you previously
 configured a TDE wallet.

4.6.4.1 Setting the TDE Master Encryption Key in the Isolated Mode External Keystore

You should complete this procedure if you have not previously configured an external keystore for Transparent Data Encryption.

- Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- **2.** Ensure that the database is open in READ WRITE mode.

You can set the TDE master encryption key if <code>OPEN_MODE</code> is set to <code>READ WRITE</code>. To find the status, run the <code>show pdbs command</code>.

3. To configure the heartbeat batch size, set the HEARTBEAT_BATCH_SIZE initialization parameter.

The HEARTBEAT_BATCH_SIZE parameter configures the size of the "batch of heartbeats" sent per heartbeat period to the external key manager. Enter a value between 2 and 100. The default value is 5. The default duration of the heartbeat period is three seconds. By setting the heartbeat batch size, you can stagger the heartbeats across batches of PDBs to ensure that for each batch a heartbeat can be completed for each PDB within the batch during the heartbeat period, and also ensure that the TDE master encryption key of the PDB can be reliably fetched from an Oracle Key Vault server and cached in the Oracle Key Vault persistent cache. (See Heartbeat Batch Size for External Keystores for details about how HEARTBEAT_BATCH_SIZE works.)

```
ALTER SYSTEM SET HEARTBEAT BATCH SIZE=30 SCOPE=BOTH SID='*';
```

4. Set the new TDE master encryption key by using the following syntax:

```
ADMINISTER KEY MANAGEMENT SET KEY
[USING TAG 'tag']
[FORCE KEYSTORE]
IDENTIFIED BY EXTERNAL STORE | Oracle_Key_Vault_password;
```

In this specification:

- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
 operation if the TDE wallet is closed, if an auto-login TDE wallet is configured
 and is currently open, or if a password-protected TDE wallet is configured and
 is currently closed.
- IDENTIFIED BY can be one of the following settings:
 - EXTERNAL STORE uses the keystore password stored in the external store to perform the keystore operation.
 - Oracle_Key_Vault_password is the password that was given during the
 Oracle Key Vault client installation. If at that time no password was given,
 then the password in the ADMINISTER KEY MANAGEMENT statement
 becomes NULL.

For example:

```
ADMINISTER KEY MANAGEMENT SET KEY
USING TAG 'sessionid=3205062574:terminal=xcvt'
FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE;
```

keystore altered.

5. Confirm that the TDE master encryption key is set.

```
SELECT MASTERKEY ACTIVATED FROM V$DATABASE KEY INFO;
```

The output should be YES.

Related Topics

About Setting the External Keystore TDE Master Encryption Key
You must create a TDE master encryption key that is stored inside the external
keystore.

4.6.4.2 Migration of a Previously Configured Encryption Key in Isolated Mode

You must migrate the previously configured master encryption key if you previously configured a TDE wallet.

Related Topics

 Migration of an Encrypted Database from a TDE Wallet to Oracle Key Vault or OCI KMS

To switch from a TDE wallet to centralized key management with Oracle Key Vault or Oracle Cloud Infrastructure (OCI) Key Management Service (KMS), after you upload all current and retired TDE master keys you must migrate the database from the TDE wallet to Oracle Key Vault or OCI KMS.

4.6.5 Step 4: Encrypt Your Data in Isolated Mode

Now that you have completed the keystore configuration and the PDB is configured in isolated mode, you can begin to encrypt data in the PDB.

Related Topics

Encrypting Columns in Tables

You can use Transparent Data Encryption to encrypt individual columns in database tables.

- Encryption Conversions for Tablespaces and Databases
 You can perform encryption operations on both offline and online tablespaces and databases.
- Oracle Key Vault Administrator's Guide

Encrypting Columns in Tables

You can use Transparent Data Encryption to encrypt individual columns in database tables.

- About Encrypting Columns in Tables
 You can encrypt individual columns in tables.
- Data Types That Can Be Encrypted with TDE Column Encryption
 Oracle Database supports a specific set of data types that can be used with TDE column encryption.
- Restrictions on Using TDE Column Encryption
 TDE column encryption is performed at the SQL layer. Oracle Database utilities that bypass the SQL layer cannot use TDE column encryption services.
- Creating Tables with Encrypted Columns
 Oracle Database provides a selection of different algorithms that you can use to define the encryption used in encrypted columns.
- Encrypting Columns in Existing Tables
 You can encrypt columns in existing tables. As with new tables, you have a choice of different algorithms to use to definite the encryption.
- Creating an Index on an Encrypted Column You can create an index on an encrypted column.
- Adding Salt to an Encrypted Column
 Salt, which is a random string added to data before encryption, is a way to strengthen the security of encrypted data.
- Removing Salt from an Encrypted Column
 You can use the ALTER TABLE SQL statement to remove salt from an encrypted column
- Changing the Encryption Key or Algorithm for Tables with Encrypted Columns
 You can use the ALTER TABLE SQL statement to change the encryption key or algorithm used in encrypted columns.
- Migrating the Algorithm to the Latest Supported Algorithm for Tables
 Re-encrypting an already encrypted table column enables you to migrate an earlier
 algorithm (for example, 3DES168) to the latest supported algorithm.

5.1 About Encrypting Columns in Tables

You can encrypt individual columns in tables.

Whether you choose to encrypt individual columns or entire tablespaces depends on the data types that the table has. There are also several features that do not support TDE column encryption.

Related Topics

- Data Types That Can Be Encrypted with TDE Column Encryption
 Oracle Database supports a specific set of data types that can be used with TDE column encryption.
- Restrictions on Using TDE Column Encryption
 TDE column encryption is performed at the SQL layer. Oracle Database utilities that bypass the SQL layer cannot use TDE column encryption services.

5.2 Data Types That Can Be Encrypted with TDE Column Encryption

Oracle Database supports a specific set of data types that can be used with TDE column encryption.

You can encrypt data columns that use a variety of different data types.

Supported data types are as follows:

- BINARY DOUBLE
- BINARY FLOAT
- CHAR
- DATE
- INTERVAL DAY TO SECOND
- INTERVAL YEAR TO MONTH
- NCHAR
- NUMBER
- NVARCHAR2
- RAW (legacy or extended)
- TIMESTAMP (includes TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE)
- VARCHAR2 (legacy or extended)

If you want to encrypt large binary objects (LOBs), then you can use Oracle SecureFiles. Oracle SecureFiles enables you to store LOB data securely. To encrypt a LOB using SecureFiles, you use the CREATE TABLE OF ALTER TABLE Statements.

You cannot encrypt a column if the encrypted column size is greater than the size allowed by the data type of the column.

Table 5-1 shows the maximum allowable sizes for various data types.

Table 5-1 Maximum Allowable Size for Data Types

Data Type	Maximum Size
CHAR	1932 bytes
VARCHAR2 (legacy)	3932 bytes

Table 5-1 (Cont.) Maximum Allowable Size for Data Types

Data Type	Maximum Size
VARCHAR2 (extended)	32,699 bytes
NVARCHAR2 (legacy)	1966 bytes
NVARCHAR2 (extended)	16,315 bytes
NCHAR	966 bytes
RAW (extended)	32,699 bytes

TDE tablespace encryption does not have these data type restrictions.

Related Topics

- Restrictions on Using Transparent Data Encryption Tablespace Encryption
 You should be aware of restrictions on using Transparent Data Encryption when you
 encrypt a tablespace.
- Oracle Database SecureFiles and Large Objects Developer's Guide

5.3 Restrictions on Using TDE Column Encryption

TDE column encryption is performed at the SQL layer. Oracle Database utilities that bypass the SQL layer cannot use TDE column encryption services.

Do not use TDE column encryption with the following database features:

- Index types other than B-tree
- Range scan search through an index
- Synchronous change data capture
- Transportable tablespaces
- Columns that have been created as identity columns

In addition, you cannot use TDE column encryption to encrypt columns used in foreign key constraints.

Applications that must use these unsupported features can use the DBMS_CRYPTO PL/SQL package for their encryption needs.

Transparent Data Encryption protects data stored on a disk or other media. It does not protect data in transit. Use the network encryption solutions discussed in *Oracle Database Security Guide* to encrypt data over the network.

Related Topics

How Transparent Data Encryption Works with Export and Import Operations
 Oracle Data Pump can export and import tables that contain encrypted columns, as well
 as encrypt entire dump sets.

- Data Types That Can Be Encrypted with TDE Column Encryption
 Oracle Database supports a specific set of data types that can be used with TDE column encryption.
- Oracle Database Security Guide

5.4 Creating Tables with Encrypted Columns

Oracle Database provides a selection of different algorithms that you can use to define the encryption used in encrypted columns.

- About Creating Tables with Encrypted Columns
 You can use the CREATE TABLE SQL statement to create a table with an encrypted
 column.
- Creating a Table with an Encrypted Column Using the Default Algorithm By default, TDE uses the AES encryption algorithm with a 192-bit key length (AES192).
- Creating a Table with an Encrypted Column Using No Algorithm or a Non-Default Algorithm

You an use the $\mbox{\tt CREATE}$ TABLE SQL statement to create a table with an encrypted column.

- Using the NOMAC Parameter to Save Disk Space and Improve Performance You can bypass checks that Transparent Data Encryption (TDE) performs. This can save up to 20 bytes of disk space per encrypted value.
- Example: Using the NOMAC Parameter in a CREATE TABLE Statement
 You can use the CREATE TABLE SQL statement to encrypt a table column using the NOMAC parameter.
- Example: Changing the Integrity Algorithm for a Table You can use the ALTER TABLE SQL statement in different foregrounds to convert different offline tablespaces in parallel.
- Creating an Encrypted Column in an External Table
 The external table feature enables you to access data in external sources as if the data were in a database table.

5.4.1 About Creating Tables with Encrypted Columns

You can use the CREATE TABLE SQL statement to create a table with an encrypted column.

To create relational tables with encrypted columns, you can specify the SQL ENCRYPT clause when you define database columns with the CREATE TABLE SQL statement.

5.4.2 Creating a Table with an Encrypted Column Using the Default Algorithm

By default, TDE uses the AES encryption algorithm with a 192-bit key length (AES192).

If you encrypt a table column without specifying an algorithm, then the column is encrypted using the AES192 algorithm. TDE adds salt to plaintext before encrypting it. Adding salt makes it harder for attackers to steal data through a brute force attack.

TDE also adds a Message Authentication Code (MAC) to the data for integrity checking. The SHA-1 integrity algorithm is used by default. (Starting with Oracle Database release 21c, SHA-1 is deprecated. If you use TDE column encryption, then Oracle recommends that you implement TDE tablespace encryption instead.)

• To create a table that encrypts a column, use the CREATE TABLE SQL statement with the ENCRYPT clause.

For example, to encrypt a table column using the default algorithm:

```
CREATE TABLE employee (
first_name VARCHAR2(128),
last_name VARCHAR2(128),
empID NUMBER,
salary NUMBER(6) ENCRYPT);
```

This example creates a new table with an encrypted column (salary). The column is encrypted using the default encryption algorithm (AES192). Salt and MAC are added by default. This example assumes that the keystore is open and a master encryption key is set.

Note:

If there are multiple encrypted columns in a table, then all of these columns must use the same pair of encryption and integrity algorithms.

Salt is specified at the column level. This means that an encrypted column in a table can choose not to use salt irrespective of whether or not other encrypted columns in the table use salt.

5.4.3 Creating a Table with an Encrypted Column Using No Algorithm or a Non-Default Algorithm

You an use the CREATE TABLE SQL statement to create a table with an encrypted column.

By default, TDE adds salt to plaintext before encrypting it. Adding salt makes it harder for attackers to steal data through a brute force attack. However, if you plan to index the encrypted column, then you must use the $\tt NO SALT$ parameter.

- To create a table that uses an encrypted column that is a non-default algorithm or no algorithm, run the CREATE TABLE SQL statement as follows:
 - If you do not want to use any algorithm, then include the ENCRYPT NO SALT clause.
 - If you want to use a non-default algorithm, then use the ENCRYPT USING clause, followed by one of the following algorithms enclosed in single quotation marks:
 - * 3DES168
 - * AES128
 - * AES192 (default)
 - * AES256

The following example shows how to specify encryption settings for the empID and salary columns.

```
CREATE TABLE employee (
    first_name VARCHAR2(128),
    last_name VARCHAR2(128),
    empID NUMBER ENCRYPT NO SALT,
    salary NUMBER(6) ENCRYPT USING '3DES168');
```

In this example:

- * The empID column is encrypted and does not use salt. Both the empID and salary columns will use the 3DES168 encryption algorithm, because all of the encrypted columns in a table must use the same encryption algorithm.
- * The salary column is encrypted using the 3DES168 encryption algorithm. Note that the string that specifies the algorithm must be enclosed in single quotation marks (''). The salary column uses salt by default.

5.4.4 Using the NOMAC Parameter to Save Disk Space and Improve Performance

You can bypass checks that Transparent Data Encryption (TDE) performs. This can save up to 20 bytes of disk space per encrypted value.

If the number of rows and encrypted columns in the table is large, then bypassing TDE checks can add up to a significant amount of disk space. In addition, this saves processing cycles and reduces the performance overhead associated with TDE. TDE uses the SHA-1 integrity algorithm by default. (Starting with Oracle Database release 21c, SHA-1 is deprecated. If you use TDE column encryption, then Oracle recommends that you implement TDE tablespace encryption instead.) All of the encrypted columns in a table must use the same integrity algorithm. If you already have a table column using the SHA-1 algorithm, then you cannot use the NOMAC parameter to encrypt another column in the same table.

• To bypass the integrity check during encryption and decryption operations, use the NOMAC parameter in the CREATE TABLE and ALTER TABLE statements.

Related Topics

Performance and Storage Overhead of Transparent Data Encryption
 The performance of Transparent Data Encryption can vary.

5.4.5 Example: Using the NOMAC Parameter in a CREATE TABLE Statement

You can use the CREATE TABLE SQL statement to encrypt a table column using the NOMAC parameter.

Example 5-1 creates a table with an encrypted column. The empID column is encrypted using the NOMAC parameter.

Example 5-1 Using the NOMAC parameter in a CREATE TABLE statement

```
CREATE TABLE employee (
    first_name VARCHAR2(128),
    last_name VARCHAR2(128),
    empID NUMBER ENCRYPT 'NOMAC',
    salary NUMBER(6));
```


5.4.6 Example: Changing the Integrity Algorithm for a Table

You can use the ALTER TABLE SQL statement in different foregrounds to convert different offline tablespaces in parallel.

Example 5-2 shows how to change the integrity algorithm for encrypted columns in a table. The encryption algorithm is set to AES256 and the integrity algorithm is set to SHA-1. The second ALTER TABLE statement sets the integrity algorithm to NOMAC.

Example 5-2 Changing the Integrity Algorithm for a Table

```
ALTER TABLE EMPLOYEE REKEY USING 'AES256' 'SHA-1';

ALTER TABLE EMPLOYEE REKEY USING 'AES256' 'NOMAC';
```

5.4.7 Creating an Encrypted Column in an External Table

The external table feature enables you to access data in external sources as if the data were in a database table.

External tables can be updated using the ORACLE DATAPUMP access driver.

 To encrypt specific columns in an external table, use the ENCRYPT clause when you define those columns:

A system-generated key encrypts the columns. For example, the following CREATE TABLE SQL statement encrypts the ssn column using the AES256 algorithm:

```
CREATE TABLE emp_ext (
first_name,
....
ssn ENCRYPT USING 'AES256',
....
```

If you plan to move an external table to a new location, then you cannot use a randomly generated key to encrypt the columns. This is because the randomly generated key will not be available at the new location.

For such scenarios, you should specify a password while you encrypt the columns. After you move the data, you can use the same password to regenerate the key required to access the encrypted column data at the new location.

Table partition exchange also requires a password-protected TDE table key.

The following example creates an external table using a password to create the TDE table key:

```
CREATE TABLE emp_ext (
    first_name,
    last_name,
    empID,
    salary,
    ssn ENCRYPT IDENTIFIED BY password
) ORGANIZATION EXTERNAL
    (
    TYPE ORACLE_DATAPUMP
    DEFAULT DIRECTORY "D_DIR"
    LOCATION('emp_ext.dat')
    )
```


REJECT LIMIT UNLIMITED AS SELECT * FROM EMPLOYEE;

5.5 Encrypting Columns in Existing Tables

You can encrypt columns in existing tables. As with new tables, you have a choice of different algorithms to use to definite the encryption.

- About Encrypting Columns in Existing Tables
 The ALTER TABLE SQL statement enables you to encrypt columns in an existing table.
- Adding an Encrypted Column to an Existing Table
 You can encrypt columns in existing tables, use a different algorithm, and use NO
 SALT to index the column.
- Encrypting an Unencrypted Column
 You can use the ALTER TABLE MODIFY statement to encrypt an existing unencrypted column.
- Disabling Encryption on a Column
 You may want to disable encryption for reasons of compatibility or performance.

5.5.1 About Encrypting Columns in Existing Tables

The ALTER TABLE SQL statement enables you to encrypt columns in an existing table.

To add an encrypted column to an existing table, or to encrypt or decrypt an existing column, you use the ALTER TABLE SQL statement with the ADD or MODIFY clause.

5.5.2 Adding an Encrypted Column to an Existing Table

You can encrypt columns in existing tables, use a different algorithm, and use ${\tt NO}$ SALT to index the column.

• To add an encrypted column to an existing table, use the ALTER TABLE ADD statement, specifying the new column with the ENCRYPT clause.

The following example adds an encrypted column, ssn, to an existing table, called employee. The ssn column is encrypted with the default AES192 algorithm. Salt and MAC are added by default.

ALTER TABLE employee ADD (ssn VARCHAR2(11) ENCRYPT);

5.5.3 Encrypting an Unencrypted Column

You can use the ALTER TABLE MODIFY statement to encrypt an existing unencrypted column.

 To encrypt an existing unencrypted column, use the ALTER TABLE MODIFY statement, specifying the unencrypted column with the ENCRYPT clause.

The following example encrypts the first_name column in the employee table. The first_name column is encrypted with the default AES192 algorithm. Salt is added to the data, by default. You can encrypt the column using a different algorithm. If you

want to index a column, then you must specify NO $\,$ SALT. You can also bypass integrity checks by using the NOMAC parameter.

```
ALTER TABLE employee MODIFY (first name ENCRYPT);
```

The following example encrypts the first_name column in the employee table using the NOMAC parameter.

```
ALTER TABLE employee MODIFY (first name ENCRYPT 'NOMAC');
```

5.5.4 Disabling Encryption on a Column

You may want to disable encryption for reasons of compatibility or performance.

• To disable column encryption, use the ALTER TABLE MODIFY command with the DECRYPT clause.

The following example decrypts the first name column in the employee table.

```
ALTER TABLE employee MODIFY (first name DECRYPT);
```

5.6 Creating an Index on an Encrypted Column

You can create an index on an encrypted column.

The column being indexed must be encrypted without salt. If the column is encrypted with salt, then the ORA-28338: cannot encrypt indexed column(s) with salt error is raised.

 To create an index on an encrypted column, use the CREATE INDEX statement with the ENCRYPT NO SALT clause.

The following example shows how to create an index on a column that has been encrypted without salt.

```
CREATE TABLE employee (
   first_name VARCHAR2(128),
   last_name VARCHAR2(128),
   empID NUMBER ENCRYPT NO SALT,
   salary NUMBER(6) ENCRYPT USING 'AES256');

CREATE INDEX employee idx on employee (empID);
```

5.7 Adding Salt to an Encrypted Column

Salt, which is a random string added to data before encryption, is a way to strengthen the security of encrypted data.

Salt ensures that the same plaintext data does not always translate to the same encrypted text. Salt removes the one common method that intruders use to steal data, namely, matching patterns of encrypted text. Adding salt requires an additional 16 bytes of storage per encrypted data value.

 To add or remove salt from encrypted columns, use the ALTER TABLE MODIFY SQL statement.

For example, suppose you want to encrypt the first_name column using salt. If the first_name column was encrypted without salt earlier, then the ALTER TABLE MODIFY statement reencrypts it using salt.

ALTER TABLE employee MODIFY (first name ENCRYPT SALT);

5.8 Removing Salt from an Encrypted Column

You can use the ALTER TABLE SQL statement to remove salt from an encrypted column.

• To remove salt from an encrypted column, use the ENCRYPT NO SALT clause in the ALTER TABLE SQL statement.

For example, suppose you wanted to remove salt from the first_name column. If you must index a column that was encrypted using salt, then you can use this statement to remove the salt before indexing.

ALTER TABLE employee MODIFY (first name ENCRYPT NO SALT);

5.9 Changing the Encryption Key or Algorithm for Tables with Encrypted Columns

You can use the ${\tt ALTER}$ TABLE SQL statement to change the encryption key or algorithm used in encrypted columns.

Each table can have only one TDE table key for its columns. You can regenerate the TDE table key with the ALTER TABLE statement. This process generates a new key, decrypts the data in the table using the previous key, reencrypts the data using the new key, and then updates the table metadata with the new key information. You can also use a different encryption algorithm for the new TDE table key.

 To change the encryption key or algorithm for tables that contain encrypted columns, use the ALTER TABLE SQL statement with the REKEY OF REKEY USING clause.

For example:

ALTER TABLE employee REKEY;

The following example regenerates the TDE table key for the employee table by using the AES256 algorithm.

ALTER TABLE employee REKEY USING 'AES256';

5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables

Re-encrypting an already encrypted table column enables you to migrate an earlier algorithm (for example, 3DES168) to the latest supported algorithm.

1. Find the encryption algorithms that the tables currently use.

For example, to find the 3DES168 encryption algorithm, which is represented by the ID 1:

```
SELECT OBJ.OBJECT_NAME AS TABLE_NAME, ENCALG AS ENCRYPTION_ALG FROM ENC$ENC,DBA_OBJECTS OBJ WHERE ENC.OBJ#=OBJ.OBJECT ID AND ENCALG = 1;
```

Output similar to the following appears:

```
TABLE_NAME ENCRYPTION_ALG
-----
EMPS 1
```

Alternatively, you can query the DBA_ENCRYPTED_COLUMNS data dictionary view.

```
SELECT TABLE_NAME, ENCRYPTION_ALG
FROM DBA_ENCRYPTED_COLUMNS
WHERE ENCRYPTION ALG = '3 Key Triple DES 168 bits key';
```

Output similar to the following appears:

TABLE_NAME	Εl	NCRYI	PTION_AI	LG			
EMPS	3	Кеу	Triple	DES	168	bits	key

2. Re-encrypt each table that is listed in the output.

For example, to migrate to the AES256 algorithm:

```
ALTER TABLE TEST REKEY USING 'AES256';
```

You can write a PL/SQL procedure to put all the tables in a list, and then iterate over the list and re-encrypt the tables in the procedure, or you can manually re-encrypt all tables.

3. To verify the re-encryption:

The following example queries the DBA ENCRYPTED COLUMNS data dictionary view:

Alternatively you can perform the following query. The ID for AES256 is 4.

```
SELECT OBJ.OBJECT_NAME AS TABLE_NAME, ENCALG AS ENCRYPTION_ALG FROM ENC$ENC, DBA_OBJECTS OBJ
WHERE ENC.OBJ#=OBJ.OBJECT_ID AND OBJ.OBJECT_NAME ='EMPS';
TABLE NAME ENCRYPTION ALG
```


EMPS 4

6

Encryption Conversions for Tablespaces and Databases

You can perform encryption operations on both offline and online tablespaces and databases.

About Encryption Conversion for Tablespaces and Databases

The CREATE TABLESPACE SQL statement can be used to encrypt new tablespaces. ALTER TABLESPACE can encrypt existing tablespaces.

Impact of a Closed TDE Keystore on Encrypted Tablespaces

A TDE keystore can be closed or migrated when an Oracle-managed tablespace is encrypted, and the database system itself must be shut down to disallow operations on an Oracle-managed tablespace.

Restrictions on Using Transparent Data Encryption Tablespace Encryption You should be aware of restrictions on using Transparent Data Encryption You should be aware of restrictions on using Transparent Data Encryption You should be aware of restrictions on using Transparent Data Encryption You should be aware of restrictions on using Transparent Data Encryption You should be aware of restrictions on using Transparent Data Encryption You should be aware of restrictions on using Transparent Data Encryption You should be aware of restrictions on using Transparent Data Encryption You should be aware of restrictions on using Transparent Data Encryption You should be a supplied to the property of the United Data Encryption Data Encryption You should be a supplied to the United Data Encryption Data Encryption You should be a supplied to the United Data Encryption Data Encryption You should be a supplied to the United Data Encryption Data Encryption You should be a supplied to the United Data Encryption Data Encryption You should be a supplied to the United Data Encryption Data Encryption You should be a supplied to the United Data Encryption Data Encryption You should be a supplied to the United Data Encryption Data Encryption Data Encryption You should be a supplied to the United Data Encryption Data Encryption You should be a supplied to the United Data Encryption Data Encryption Data Encryption You should be a supplied to the United Data Encryption Data Encryption Data Encryption You should be a supplied to the United Data Encryption D

You should be aware of restrictions on using Transparent Data Encryption when you encrypt a tablespace.

Creating an Encrypted New Tablespace

When you create a new tablespace, you can configure its encryption settings during the creation process.

Setting the Tablespace Encryption Default Algorithm

The TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM applies to specific encryption scenarios.

Encrypting Future Tablespaces

You can configure Oracle Database to automatically encrypt future tablespaces that you will create.

Encrypted Sensitive Credential Data in the Data Dictionary

You can encrypt sensitive credential data in the SYS.LINK\$ and SYS.SCHEDULER\$ CREDENTIAL system tables.

Encryption Conversions for Existing Offline Tablespaces

You can perform offline encryption conversions by using the ALTER TABLESPACE SQL statement OFFLINE, ENCRYPT, and DECRYPT clauses.

Encryption Conversions for Existing Online Tablespaces

You can encrypt and decrypt an online existing tablespace by using the ALTER TABLESPACE SQL statement with the ONLINE and ENCRYPT or DECRYPT clauses.

Rekeying an Encrypted Tablespace

Rekying an already encrypted tablespace enables you to change the data encryption keys from one algorithm to another, for example from AES128 to AES256.

Creating an Encrypted Database Using DBCA

You can use DBCA to create an encrypted database in both single instance multitenant and Oracle Data Guard environments.

Encryption Conversions for Existing Databases

You can encrypt both offline and online databases.

6.1 About Encryption Conversion for Tablespaces and Databases

The CREATE TABLESPACE SQL statement can be used to encrypt new tablespaces. ALTER TABLESPACE can encrypt existing tablespaces.

In addition to encrypting new and existing tablespaces, you can encrypt full databases, which entails the encryption of the Oracle-managed tablespaces (in this release, the SYSTEM, SYSAUX, TEMP, and UNDO tablespaces). An Oracle-supplied tablespace contains information necessary for the correct functioning (confidentiality, integrity, and availability) of the database system. This information includes the system's data dictionary, the system's temporary sort area, the system's undo segment, and the system's auxiliary data. This information is only expected to be updated internally by the Oracle database server itself, and does not normally be updated directly by users.

To encrypt a full database, you use the ALTER TABLESPACE statement, not ALTER DATABASE, to encrypt the Oracle-managed tablespaces.

The following table compares the differences between an offline and an online encryption conversion of tablespaces and databases.

Table 6-1 Offline and Online Tablespace and Database Encryption Conversions

Functionality	Offline Conversion	Online Conversion
Release with minimum conversion capability	Oracle Database 11g release 2 (11.2)	Oracle Database 12c release 2 (12.2) and later
What can be backported?	The ability to encrypt or decrypt a data file with the AES128 algorithm (using ALTER DATABASE DATAFILE data_file ENCRYPT or DECRYPT) can be used in Oracle Database releases 12.1.0.2 and 11.2.0.4.	No
Algorithms supported	All symmetric encryption algorithms that TDE supports.	All symmetric encryption algorithm that TDE supports.
When can the conversion be run?	When the tablespace is offline or the database is in the mount stage.	When the tablespace is online and database is open in read/write mode.
Is auxiliary space required for the conversion?	No	Yes.
Oracle Data Guard conversion guidelines	Convert both the primary and standby manually. Convert the standby first and then switch over to minimum downtime	After you convert the primary, the standby conversion takes place automatically. You cannot perform an online conversion directly on the standby.

Table 6-1 (Cont.) Offline and Online Tablespace and Database Encryption Conversions

Functionality	Offline Conversion	Online Conversion
Encrypt the SYSTEM, SYSAUX, and UNDO tablespaces (database conversion)	Oracle Database 12c release 2 (12.2) and later only. You must set COMPATIBILITY to 12.2.0.0. Only auto-login keystores are supported.	Oracle Database 12c release 2 (12.2) and later only. You must set COMPATIBILITY to 12.2.0.0.
Can an existing TEMP tablespace be converted?	No, but you can create an encrypted TEMP tablespace in Oracle Database 12c release 2 (12.2) and later, make it the default temporary tablespace, and then drop the original TEMP tablespace.	No, but you can create an encrypted TEMP tablespace in Oracle Database 12c release 2 (12.2) and later, make it the default temporary tablespace, and then drop the original TEMP tablespace.
Can an existing tablespace be decrypted?	You only can decrypt a tablespace or data file that was previously encrypted by an offline encrypt operation. Oracle does not recommend that you decrypt the UNDO tablespace once it is encrypted.	Yes, but Oracle does not recommend that you decrypt the UNDO tablespace once it is encrypted.
Can encryption keys be rekeyed?	No, but after the tablespace is encrypted, you can then use online conversion to rekey in Oracle Database 12c release 2 (12.2) compatibility.	Yes
Can encryption operations be run in parallel?	You can run parallel encryption conversions at the data file level with multiple user sessions running.	You can run parallel encryption conversions at the tablespace level with multiple user sessions running.
What to do if an encryption conversion SQL statement fails to complete?	Re-issue the encryption or decryption SQL statement to ensure that all the data files within the tablespace are consistently either encrypted or decrypted.	Rerun the SQL statement but use the FINISH clause.

Related Topics

- Supported Encryption and Integrity Algorithms
 Oracle supports the AES, ARIA and DES algorithms.
- About Encryption Conversions for Existing Offline Tablespaces
 You can encrypt or decrypt an existing data file of a user tablespace when the tablespace is offline or when the database is not open.
- About Encryption Conversions for Existing Online Tablespaces
 You can encrypt, decrypt, or rekey existing user tablespaces, and the SYSTEM, SYSAUX,
 and UNDO tablespace when they are online.

6.2 Impact of a Closed TDE Keystore on Encrypted Tablespaces

A TDE keystore can be closed or migrated when an Oracle-managed tablespace is encrypted, and the database system itself must be shut down to disallow operations on an Oracle-managed tablespace.

A closed TDE keystore has no impact on operations that involve an encrypted Oracle-managed tablespace (in this release, the SYSTEM, SYSAUX, TEMP, and UNDO tablespaces). This enables operations that are performed by background processes (for example, the log writer) to continue to work on these tablespaces while the TDE keystore is closed. If you want to disallow operations on an encrypted Oracle-managed tablespace, then you must shut down the database.

With regard to user-created tablespaces, a closed TDE keystore causes operations such as rotating a key or decrypting the tablespace to fail with an <code>ORA-28365 wallet is not open</code> error, just as it did in earlier releases. If you want to disallow operations on the user-created tablespace, then close the TDE keystore (or shut down the database).

User-created data can be copied into an encrypted Oracle-managed tablespace (for example, by an internal process such as DBMS_STATS statistics gathering) from a user-created tablespace while the TDE keystore is open. Closing the keystore does not prevent a user from viewing this data afterward, when the TDE keystore is in the CLOSED state at the time that you query the V\$ENCRYPTION_WALLET view. Access to the original data by attempting to query an encrypted user-created tablespace will fail, resulting in an ORA-28365 wallet is not open error.

Table 6-2 describes the operations that are necessary to disallow or allow operations on encrypted data in user-created tablespaces and Oracle-managed tablespaces. For example, in the first scenario, both the user-created tablespaces and the Oracle-managed tablespaces are encrypted. In this case, for the encrypted data in the encrypted user-created tablespace, an administrator can close or open keystores, and shut down and open a database with an encrypted user-created tablespace. When an encrypted Oracle-managed tablespace is configured, the administrator can disallow operations by shutting down the database, and can allow operations by starting up in mount mode, opening the TDE keystore, and then opening the database. (It is necessary to open the TDE keystore *before* opening the database because the system may need the TDE master encryption key to decrypt the bootstrap dictionary tables, which are located in the encrypted Oracle-managed tablespace.) The N/A flags in this table refer to non-encrypted data, which you can always operate on, unless the instance is shut down.

Table 6-2 Necessary Commands to Disallow or Allow Operations on Encrypted Data

Tablespace Encryption Scenarios	Commands to Disallow Operations on Encrypted User- Created Tablespace Data	Commands to Disallow Operations on Encrypted Oracle- Managed Tablespace Data	Commands to Allow Operations on Encrypted User- Created Tablespace Data	Commands to Allow Operations on Encrypted Oracle-Managed Tablespace Data
Both user-created and Oracle-managed tablespaces encrypted	• ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY password; • SHUTDOWN	SHUTDOWN	• STARTUP MOUNT; • ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY password; • ALTER DATABASE OPEN	• STARTUP MOUNT; • ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY password; • ALTER DATABASE OPEN
User tablespace encrypted; Oracle- managed tablespace not encrypted	• ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY password; • SHUTDOWN	N/A	• STARTUP MOUNT; • ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY password; • ALTER DATABASE OPEN	N/A
User tablespace not encrypted; Oracle- managed tablespace encrypted	N/A	SHUTDOWN	N/A	• STARTUP MOUNT; • ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY password; • ALTER DATABASE OPEN
Neither user nor Oracle-managed tablespaces encrypted	N/A	N/A	N/A	N/A

6.3 Restrictions on Using Transparent Data Encryption Tablespace Encryption

You should be aware of restrictions on using Transparent Data Encryption when you encrypt a tablespace.

Note the following restrictions:

- Transparent Data Encryption (TDE) tablespace encryption encrypts or decrypts
 data during read and write operations, as opposed to TDE column encryption,
 which encrypts and decrypts data at the SQL layer. This means that most
 restrictions that apply to TDE column encryption, such as data type restrictions
 and index type restrictions, do not apply to TDE tablespace encryption.
- To perform import and export operations, use Oracle Data Pump.

Related Topics

- Encrypting an Unencrypted Column
 You can use the ALTER TABLE MODIFY statement to encrypt an existing unencrypted column.
- Data Types That Can Be Encrypted with TDE Column Encryption
 Oracle Database supports a specific set of data types that can be used with TDE column encryption.
- Oracle Database Utilities

6.4 Creating an Encrypted New Tablespace

When you create a new tablespace, you can configure its encryption settings during the creation process.

- Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption
 You must set the COMPATIBLE initialization parameter before creating an encrypted
 tablespace.
- Step 2: Set the Tablespace TDE Master Encryption Key
 You should ensure that you have configured the TDE master encryption key.

6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption

You must set the COMPATIBLE initialization parameter before creating an encrypted tablespace.

- About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption A minimum COMPATIBLE initialization parameter setting of 11.2.0.0 enables the full set of tablespace encryption features.
- Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption To set the COMPATIBLE initialization parameter, you must edit the initialization parameter file for the database instance.

6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption

A minimum COMPATIBLE initialization parameter setting of 11.2.0.0 enables the full set of tablespace encryption features.

Setting the compatibility to 11.2.0.0 enables the following functionality:

- The 11.2.0.0 setting enables the database to use any of the four supported algorithms for data encryption (3DES168, AES128, AES192, and AES256).
- The 11.2.0.0 setting enables the migration of a key from a TDE wallet to an external keystore (ensure that the TDE master encryption key was configured for the external keystore)
- The 11.2.0.0 setting enables rekeying the TDE master encryption key

Be aware that once you set the COMPATIBLE parameter to 11.2.0.0, the change is irreversible. To use tablespace encryption, ensure that the compatibility setting is at the minimum, which is 11.2.0.0.

Related Topics

- Oracle Database SQL Language Reference
- Oracle Database Administrator's Guide

6.4.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption

To set the COMPATIBLE initialization parameter, you must edit the initialization parameter file for the database instance.

- 1. Connect to the united mode CDB root or isolated mode PDB as a user who has been granted administrative privileges.
- 2. Check the current setting of the COMPATIBLE parameter.

For example:

SHOW PARAMETER COMPATIBLE

NAME	TYPE	VALUE
compatible	string	12.2.0.0
noncdbcompatible	BOOLEAN	FALSE

3. If you must change the COMPATIBLE parameter, then complete the remaining steps in this procedure.

The value should be 11.2.0.0 or later.

- 4. From the command line, locate the initialization parameter file for the database instance.
 - UNIX systems: This file is in the ORACLE_HOME/dbs directory and is named initORACLE SID.ora (for example, initmydb.ora).
 - Windows systems: This file is in the <code>ORACLE_HOME</code>\database directory and is named <code>initORACLE_SID.ora</code> (for example, <code>initmydb.ora</code>).
- **5.** Edit the initialization parameter file to use the new COMPATIBLE setting.

For example:

COMPATIBLE=20.1.0.0

- 6. Connect as a user who has the SYSDBA administrative privilege, and then restart the database.
 - From the CDB root:

SHUTDOWN IMMEDIATE STARTUP

From a PDB:

ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE; ALTER PLUGGABLE DATABASE pdb name OPEN;

7. If tablespace encryption is in use, then open the keystore at the database mount. The keystore must be open before you can access data in an encrypted tablespace.

For example:

STARTUP MOUNT;
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY keystore_password;
ALTER DATABASE OPEN;

6.4.2 Step 2: Set the Tablespace TDE Master Encryption Key

You should ensure that you have configured the TDE master encryption key.

 Set the TDE master encryption key for either software TDE master encryption keys or hardware TDE master encryption keys, using the same steps that you would use for united mode or isolated mode.

6.4.3 Step 3: Create the Encrypted Tablespace

After you have set the COMPATIBLE initialization parameter, you are ready to create the encrypted tablespace.

- About Creating Encrypted Tablespaces
 To create an encrypted tablespace, you can use the CREATE TABLESPACE SQL statement.
- Creating an Encrypted Tablespace
 To create an encrypted tablespace, you must use the CREATE TABLESPACE statement with the ENCRYPTION USING clause.
- Example: Creating an Encrypted Tablespace That Uses AES192
 You can use the CREATE TABLESPACE SQL statement to create an encrypted tablespace.
- Example: Creating an Encrypted Tablespace That Uses the Default Algorithm
 You can use the CREATE TABLESPACE SQL statement to create an encrypted
 tablespace that uses the default algorithm.

6.4.3.1 About Creating Encrypted Tablespaces

To create an encrypted tablespace, you can use the CREATE TABLESPACE SQL statement.

You must have the CREATE TABLESPACE system privilege to create an encrypted tablespace.

You can import data into an encrypted tablespace by using Oracle Data Pump. You can also use a SQL statement such as CREATE TABLE...AS SELECT... or ALTER TABLE...MOVE... to move data into an encrypted tablespace. The CREATE TABLE...AS

SELECT... statement creates a table from an existing table. The ALTER TABLE...MOVE... statement moves a table into the encrypted tablespace.

For security reasons, you cannot encrypt a tablespace with the NO SALT option.

You can query the ENCRYPTED column of the DBA_TABLESPACES and USER_TABLESPACES data dictionary views to verify if a tablespace was encrypted.

6.4.3.2 Creating an Encrypted Tablespace

To create an encrypted tablespace, you must use the CREATE TABLESPACE statement with the ENCRYPTION USING clause.

Run the CREATE TABLESPACE statement, using its encryption clauses. For example:

```
CREATE TABLESPACE encrypt_ts
DATAFILE '$ORACLE_HOME/dbs/encrypt_df.dbf' SIZE 1M
ENCRYPTION USING 'AES256' ENCRYPT;
```

In this specification:

• ENCRYPTION USING 'AES256' ENCRYPT specifies the encryption algorithm and the key length for the encryption. The ENCRYPT clause encrypts the tablespace. Enclose this setting in single quotation marks (' '). The key lengths are included in the names of the algorithms. If you do not specify an encryption algorithm, then the default encryption algorithm, AES128, is used.

Related Topics

Supported Encryption and Integrity Algorithms
 Oracle supports the AES, ARIA and DES algorithms.

6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192

You can use the CREATE TABLESPACE SQL statement to create an encrypted tablespace.

Example 6-1 creates a tablespace called <code>securespace_1</code> that is encrypted using the <code>AES192</code> algorithm.

Example 6-1 Creating an Encrypted Tablespace That Uses AES192

```
CREATE TABLESPACE securespace_1
DATAFILE '/home/user/oradata/secure01.dbf'
SIZE 150M
ENCRYPTION USING 'AES192' ENCRYPT;
```

6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm

You can use the CREATE TABLESPACE SQL statement to create an encrypted tablespace that uses the default algorithm.

Example 6-2 creates a tablespace called securespace_2. Because no encryption algorithm is specified, the default encryption algorithm (AES128) is used. The key length is 128 bits.

You cannot encrypt an existing tablespace.

Example 6-2 Creating an Encrypted Tablespace That Uses the Default Algorithm

CREATE TABLESPACE securespace_2
DATAFILE '/home/user/oradata/secure01.dbf'
SIZE 150M
ENCRYPTION ENCRYPT;

6.5 Setting the Tablespace Encryption Default Algorithm

The TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM applies to specific encryption scenarios.

These scenarios are as follows:

- Encryption commands that do not allow to specify the encryption algorithm
- New tablespaces that are created without the encryption syntax
- The encryption algorithm for the SYSTEM tablespace

TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM only becomes effective if it is set before the first SET KEY operation with Oracle Key Vault, or the CREATE KEYSTORE command for TDE wallet-based TDE configuration.

TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM applies to both offline and online tablespace encryption operations. It also applies to future encrypted tablespaces, if TABLESPACE_ENCRYPTION has been set appropriately. In a multitenant environment, you can set TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM in the CDB root or in individual PDBs.

• Enter the following ALTER SYSTEM statement:

ALTER SYSTEM SET TABLESPACE ENCRYPTION DEFAULT ALGORITHM = value SCOPE=BOTH;

In this specification, *value* can be one of the following encryption algorithms: AES128, AES192, AES256, 3DES168, ARIA128, ARIA192, or ARIA256. The default encryption algorithm is AES256. Note that for 3DES168, in FIPS mode, this parameter can take only AES128, AES192, and AES256.

Note:

Starting with Oracle Database 23ai, the Transparent Data Encryption (TDE) decryption libraries for the GOST and SEED algorithms are deprecated, and encryption to GOST and SEED are desupported. Starting with Oracle Database 23ai, the Transparent Data Encryption (TDE) encryption libraries for the GOST and SEED algorithms are desupported and removed. The GOST and SEED decryption libraries are deprecated. Both are removed on HP Itanium platforms. GOST 28147-89 has been deprecated by the Russian government, and SEED has been deprecated by the South Korean government. If you need South Korean government-approved TDE cryptography, then use ARIA instead. If you are using GOST 28147-89, then you must decrypt and encrypt with another supported TDE algorithm. The decryption algorithms for GOST 28147-89 and SEED are included with Oracle Database 23ai, but are deprecated, and the GOST encryption algorithm is desupported with Oracle Database 23ai. If you are using GOST or SEED for TDE encryption, then Oracle recommends that you decrypt and encrypt with another algorithm before upgrading to Oracle Database 23ai. However, with the exception of the HP Itanium platform, the GOST and SEED decryption libraries are available with Oracle Database 23ai, so you can also decrypt after upgrading.

6.6 Encrypting Future Tablespaces

You can configure Oracle Database to automatically encrypt future tablespaces that you will create.

- About Encrypting Future Tablespaces
 The ENCRYPT_NEW_TABLESPACES dynamic database initialization parameter controls if future tablespaces are encrypted.
- Setting Future Tablespaces to be Encrypted
 You can set the ENCRYPT_NEW_TABLESPACES database initialization parameter to
 automatically encrypt future tablespaces that you create.

6.6.1 About Encrypting Future Tablespaces

The <code>ENCRYPT_NEW_TABLESPACES</code> dynamic database initialization parameter controls if future tablespaces are encrypted.

By default, all Oracle Cloud databases are encrypted. If you install an off-the-shelf application into such a database, its installation scripts most likely do not have the encryption syntax. In this case, because <code>ENCRYPT_NEW_TABLESPACES</code> is set to <code>CLOUD_ONLY</code>, those tablespaces would be created encrypted regardless.

Note:

Starting with Oracle Database 23ai, the ENCRYPT_NEW_TABLESPACES initialization parameter is deprecated.

Oracle recommends that you use the initialization parameter TABLESPACE ENCRYPTION, which is new for Oracle Database 23ai.

In an Oracle Cloud environment, the following scenarios may occur when you create encrypted tablespaces in Oracle Cloud and on-premises environments:

- You create a test database in Oracle Cloud and the tablespaces were encrypted by using when the ENCRYPT_NEW_TABLESPACE parameter has been set to automatically create the Cloud database as encrypted. However, you may not have the intention or even an Advanced Security Option license to bring the encrypted database back on premises. For this use case, Oracle Recovery Manager (Oracle RMAN) provides the option to duplicate or restore AS DECRYPTED.
- You create a hybrid environment where the primary database is on premises and the standby database is on Oracle Cloud. If a switchover operation takes place, then the new primary is on Oracle Cloud. If a new tablespace is transparently encrypted, then a similar scenario to the first item in this list may occur. For example, suppose you do not have an Advanced Security Option (ASO) license, and you have an automatically encrypted tablespace in the Oracle Cloud. The standby database on premises is also automatically encrypted. In this case, you either need an Advanced Security license (which includes Transparent Data Encryption and Data Redaction) for the on-premises standby database, or you cannot use the standby database.

Related Topics

Encryption of Tablespaces in an Oracle Data Guard Environment
 You can control tablespace encryption in the primary and standby databases in an Oracle Data Guard environment.

6.6.2 Setting Future Tablespaces to be Encrypted

You can set the ${\tt ENCRYPT_NEW_TABLESPACES}$ database initialization parameter to automatically encrypt future tablespaces that you create.

Starting with Oracle Database 23ai, the ENCRYPT_NEW_TABLESPACES initialization parameter is deprecated.

Oracle recommends that you use the initialization parameter TABLESPACE ENCRYPTION, which is new for Oracle Database 23ai.

Enter the following ALTER SYSTEM statement:

ALTER SYSTEM SET ENCRYPT NEW TABLESPACES = value;

In this specification, value can be:

- CLOUD_ONLY transparently encrypts the tablespace in the Cloud using the tablespace encryption default algorithm if you do not specify the ENCRYPTION clause of the CREATE TABLESPACE SQL statement, or to the algorithm specified by the TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM dynamic parameter. It applies only to an Oracle Cloud environment. If you create the tablespace on premises, then it will follow the CREATE TABLESPACE statement specification that you enter. For example, if you omit the ENCRYPTION clause, then the tablespace is created unencrypted. If you include this clause and use a different algorithm, then the tablespace will use that algorithm. CLOUD ONLY is the default.
- ALWAYS automatically encrypts the tablespace using the tablespace encryption default algorithm, or to the algorithm specified by the TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM dynamic parameter, if you omit the ENCRYPTION clause of CREATE TABLESPACE, for both the Cloud and premises scenarios.
 - If you do provide the ENCRYPTION clause, however, the algorithm that you specify takes precedence over the tablespace encryption default algorithm.
- DDL encrypts the tablespace using the specified setting of the ENCRYPTION clause of CREATE TABLESPACE, for both Oracle Cloud and on-premises environments.

Related Topics

- Encryption of Tablespaces in an Oracle Data Guard Environment
 You can control tablespace encryption in the primary and standby databases in an Oracle Data Guard environment.
- Oracle Database Reference

6.7 Encrypted Sensitive Credential Data in the Data Dictionary

You can encrypt sensitive credential data in the SYS.LINK\$ and SYS.SCHEDULER\$_CREDENTIAL system tables.

By default, the credential data in the SYS.LINK\$ and SYS.SCHEDULER\$_CREDENTIAL system tables is obfuscated. However, because of the availability of many types of de-obfuscation algorithms, Oracle recommends that you encrypt this sensitive credential data. To check the status the data dictionary credentials, you can query the DICTIONARY_CREDENTIALS_ENCRYPT data dictionary view.

The encryption of sensitive credential data in these two system tables uses Transparent Data Encryption. Encryption of credential data uses the AES256 algorithm. To encrypt credential data, you do not need an Oracle Advanced Security Option license, but you must be granted the SYSKM administrative privilege and the database must have an open keystore.

Related Topics

Oracle Database Security Guide

6.8 Encryption Conversions for Existing Offline Tablespaces

You can perform offline encryption conversions by using the ALTER TABLESPACE SQL statement OFFLINE, ENCRYPT, and DECRYPT clauses.

- About Encryption Conversions for Existing Offline Tablespaces
 You can encrypt or decrypt an existing data file of a user tablespace when the tablespace is offline or when the database is not open.
- Encrypting an Existing User-Defined Tablespace with Offline Conversion
 To encrypt an existing tablespace with offline conversion, you can use the ALTER
 TABLESPACE SQL statement with the OFFLINE and ENCRYPT clauses.
- Decrypting an Existing Tablespace with Offline Conversion
 To decrypt an existing tablespace with offline conversion, you can use the ALTER TABLESPACE SQL statement with the OFFLINE and DECRYPT clauses.

6.8.1 About Encryption Conversions for Existing Offline Tablespaces

You can encrypt or decrypt an existing data file of a user tablespace when the tablespace is offline or when the database is not open.

There are two options for performing the encryption or decryption:

 Offline encryption of the data file level: This type does not have the option to specify an encryption algorithm. It uses the default encryption algorithm. For example:

```
ALTER DATABASE DATAFILE 'path_to_data_file.dbf' ENCRYPT;
```

• **Offline encrypting a tablespace:** Use the following syntax. If you omit the [USING 'algorithm'], then the default encryption algorithm is used.

```
ALTER TABLESPACE tablespace_name ENCRYPTION OFFLINE [USING 'algorithm'] ENCRYPT;
```

Use the offline encryption method if you do not plan to change the compatibility of your databases from Oracle Database 11c release 2 (11.2) or Oracle Database 12c release 1 (12.1) to release 19c, which is irreversible. The offline encryption method is also useful if you want to quickly make use of Transparent Data Encryption before you upgrade this database to release 19c. You can both encrypt and decrypt offline tablespaces.

Note the following:

- If you want to encrypt the Oracle Database-supplied tablespaces (SYSTEM, SYSAUX, and UNDO) using the offline conversion method, then you must use the method that is recommended when you encrypt an existing database with offline conversion.
- You can use the online method to rekey, change the encryption algorithm, or decrypt a tablespace that was previously encrypted with the offline method.
- If you want to change the algorithm in the offline mode, then you must first decrypt the tablespace and re-encrypt with the new algorithm.
- If you have configured Oracle Data Guard, then you can minimize downtime by encrypting the tablespaces on the standby first, switching over to the primary, and then performing an offline encryption the tablespaces on the new standby database. Offline encryption (both on the data file and tablespace level) are is performed on the standby first. Online encryption is an Oracle Data Guard transaction, and as such, it is replayed on the standby database.

• You can use the USING ... ENCRYPT clause to specify an encryption algorithm. Supported algorithms are AES and ARIA with 128, 192, and 256 bits key length. To check the encryption key, query the ENCRYPTIONALG column in the V\$DATABASE_KEY_INFO view.

Note:

Starting with Oracle Database 23ai, the Transparent Data Encryption (TDE) decryption libraries for the GOST and SEED algorithms are deprecated, and encryption to GOST and SEED are desupported. Starting with Oracle Database 23ai, the Transparent Data Encryption (TDE) encryption libraries for the GOST and SEED algorithms are desupported and removed. The GOST and SEED decryption libraries are deprecated. Both are removed on HP Itanium platforms. GOST 28147-89 has been deprecated by the Russian government, and SEED has been deprecated by the South Korean government. If you need South Korean government-approved TDE cryptography, then use ARIA instead. If you are using GOST 28147-89, then you must decrypt and encrypt with another supported TDE algorithm. The decryption algorithms for GOST 28147-89 and SEED are included with Oracle Database 23ai, but are deprecated, and the GOST encryption algorithm is desupported with Oracle Database 23ai. If you are using GOST or SEED for TDE encryption, then Oracle recommends that you decrypt and encrypt with another algorithm before upgrading to Oracle Database 23ai. However, with the exception of the HP Itanium platform, the GOST and SEED decryption libraries are available with Oracle Database 23ai, so you can also decrypt after upgrading.

- To set the default encryption algorithm for future offline tablespace encryption operations, set the TABLESPACE ENCRYPTION DEFAULT ALGORITHM dynamic parameter.
- You can use the ALTER TABLESPACE statement to convert offline tablespaces in parallel by using multiple foreground sessions to encrypt different data files.
- If you are using Oracle Data Guard, you can minimize the downtime by encrypting the tablespaces on the standby first, switching over, and then encrypting the tablespaces on the original primary next.
- For Oracle Database 11g release 2 (11.2.0.4) and Oracle Database 12c release 1 (12.1.0.2), you cannot perform an offline encryption of the SYSTEM and SYSAUX tablespaces. For releases earlier than Oracle Database 19c, you cannot encrypt the SYSTEM, SYSAUX, TEMP, and UNDO tablespaces. Also, Oracle does not recommend encrypting offline the UNDO tablespace in these releases. Doing so prevents the keystore from being closed, and this prevents the database from functioning. In addition, encrypting the UNDO tablespace while the database is offline is not necessary because all undo records that are associated with any encrypted tablespaces are already automatically encrypted in the UNDO tablespace. If you want to encrypt the TEMP tablespace, you must drop and then recreate it as encrypted.

Related Topics

- Encrypting an Existing Database with Offline Conversion
 When you encrypt an existing database with offline conversion, for the Oracle-managed tablespaces, you do not specify an encryption algorithm.
- Supported Encryption and Integrity Algorithms
 Oracle supports the AES, ARIA and DES algorithms.

Setting the Tablespace Encryption Default Algorithm
 The TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM applies to specific encryption scenarios.

6.8.2 Encrypting an Existing User-Defined Tablespace with Offline Conversion

To encrypt an existing tablespace with offline conversion, you can use the ALTER TABLESPACE SQL statement with the OFFLINE and ENCRYPT clauses.

The procedure that is described in this section applies to the case where you want to encrypt individual user-created tablespaces within a database. These tablespaces can be encrypted offline. However, the Oracle Database-supplied SYSTEM and UNDO tablespaces cannot be brought offline. If you want to encrypt the tablespaces offline, then you must use the method that is described in Encrypting an Existing Database with Offline Conversion.

 Connect to the united mode CDB root or isolated mode PDB as a user who has been granted administrative privileges.

You must have the SYSDBA administrative privilege to work with the SYSTEM and SYSAUX tablespaces. Otherwise, connect with the SYSKM administrative privilege.

2. Bring the tablespace offline.

```
ALTER TABLESPACE users OFFLINE NORMAL;
```

3. Back up the tablespace.

The offline conversion method does not use auxiliary disk space or files, and it operates directly in-place to the data files. Therefore, you should perform a full backup of the user tablespace before converting it offline.

 As a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege, open the TDE wallet.

For example:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY TDEk wallet password;
```

Encrypt the tablespace.

For example, to encrypt an entire tablespace, include its data files:

```
ALTER TABLESPACE users1 ENCRYPTION OFFLINE ENCRYPT;
```

This example encrypts the tablespace with the default encryption algorithm, AES128. (AES256 is the default.) To use a different encryption algorithm, enter a statement similar to the following:

```
ALTER TABLESPACE users2 ENCRYPTION OFFLINE USING 'AES128' ENCRYPT;
```

To encrypt individual data files within a tablespace, use the ALTER DATABASE DATAFILE SQL statement. For example, to encrypt the data files user_01.dbf and user 02.dbf:

```
ALTER DATABASE DATAFILE 'user_01.dbf' ENCRYPT;
ALTER DATABASE DATAFILE 'user 02.dbf' ENCRYPT;
```


In the same database session, these statements encrypt each of the data files in sequence, one after another. If you run each statement in its own database session, then they will be run in parallel.

If the encryption process is interrupted, then rerun the ALTER TABLESPACE statement. The kinds of errors that you can expect in an interruption are general errors, such as file system or storage file system errors. The data files within the tablespace should be consistently encrypted. For example, suppose you offline a tablespace that has 10 files but for some reason, the encryption only completes for nine of the files, leaving one decrypted. Although it is possible to bring the tablespace back online with such inconsistent encryption if the COMPATIBLE parameter is set to 12.2.0.0 or later, then it is not recommended to leave the tablespace in this state. If COMPATIBLE is less than 12.2.0.0, then it is not possible to bring the tablespace online if the encryption property is inconsistent across the data files.

- 6. Bring the tablespace back online or open the database.
 - To bring the tablespace back online:

```
ALTER TABLESPACE users ONLINE;
```

To open a database in a non-multitenant environment:

```
ALTER DATABASE OPEN
```

In a multitenant environment, you can encrypt a data file or tablespace with the offline method if the root is open and the PDB is not open. For example, for a PDB named hr pdb:

```
ALTER PLUGGABLE DATABASE hr pdb OPEN
```

7. Perform a full backup of the converted tablespace.

Related Topics

Supported Encryption and Integrity Algorithms
 Oracle supports the AES, ARIA and DES algorithms.

6.8.3 Decrypting an Existing Tablespace with Offline Conversion

To decrypt an existing tablespace with offline conversion, you can use the ALTER TABLESPACE SQL statement with the OFFLINE and DECRYPT clauses.

1. Connect to the united mode CDB root or isolated mode PDB as a user who has been granted the SYSDBA administrative privilege.

You must have the SYSDBA administrative privilege to work with the SYSTEM and SYSAUX tablespaces. Otherwise, connect with the SYSKM administrative privilege.

2. Bring the tablespace offline.

```
ALTER TABLESPACE users OFFLINE NORMAL;
```

3. As a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege, open the keystore.

For example:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY TDE wallet password;
```

4. Run the ALTER TABLESPACE SQL statement to perform the decryption.

For example, for a tablespace called users:

ALTER TABLESPACE users ENCRYPTION OFFLINE DECRYPT;

If the decryption process is interrupted, then rerun the ALTER TABLESPACE statement. The kinds of errors that you can expect in an interruption are general errors, such as file system or storage file system errors. The data files within the tablespace should be consistently decrypted. For example, suppose you offline a tablespace that has 10 files but for some reason, the decryption only completes for nine of the files, leaving one encrypted. Although it is possible to bring the tablespace back online with such inconsistent decryption if the COMPATIBLE parameter is set to 12.2.0.0 or later, then it is not recommended to leave the tablespace in this state. If COMPATIBLE is less than 12.2.0.0, then it is not possible to bring the tablespace online if the encryption property is inconsistent across the data files.

Bring the tablespace online.

ALTER TABLESPACE users ONLINE;

6.9 Encryption Conversions for Existing Online Tablespaces

You can encrypt and decrypt an online existing tablespace by using the ALTER TABLESPACE SQL statement with the ONLINE and ENCRYPT or DECRYPT clauses.

- About Encryption Conversions for Existing Online Tablespaces
 You can encrypt, decrypt, or rekey existing user tablespaces, and the SYSTEM,
 SYSAUX, and UNDO tablespace when they are online.
- Encrypting an Existing Tablespace with Online Conversion
 To encrypt an existing tablespace with online conversion, use ALTER TABLESPACE
 with the ONLINE and ENCRYPT clauses.
- Rekeying an Existing Tablespace with Online Conversion
 To rekey an existing tablespace that is online, you can use the REKEY clause of the ALTER TABLESPACE SQL statement.
- Rekeying the SYSAUX and UNDO Tablespaces with Online Conversion
 To rekey the SYSAUX and UNDO online tablespaces, you can use the REKEY clause of
 the ALTER TABLESPACE SQL statement.
- Decrypting an Existing Tablespace with Online Conversion
 To decrypt an existing tablespace with online conversion, you can use the ALTER TABLESPACE SQL statement with DECRYPT clause.
- Finishing an Interrupted Online Encryption Conversion
 If an online encryption process is interrupted, then you can complete the conversion by rerunning the ALTER TABLESPACE statement using the FINISH clause.

6.9.1 About Encryption Conversions for Existing Online Tablespaces

You can encrypt, decrypt, or rekey existing user tablespaces, and the SYSTEM, SYSAUX, and UNDO tablespace when they are online.

However, you cannot encrypt, decrypt, or rekey a temporary tablespace online.

An online tablespace can be created by using the <code>ONLINE</code> clause of the <code>CREATE TABLESPACE</code> SQL statement. When you encrypt or rekey a tablespace online, the tablespace will have its own independent encryption keys and algorithms.

Note the following:

- If an offline tablespace has been encrypted, then you can rekey it online to use a different algorithm.
- You can encrypt multiple tablespaces online in parallel by using multiple foreground sessions to encrypt different tablespaces. Within each tablespace, the data files are encrypted sequentially.
- To set the default encryption algorithm for future online tablespace encryption operations, set the TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM dynamic parameter.
- If the conversion is interrupted, then you can resume the process by issuing the FINISH clause of the ALTER TABLESPACE SQL statement.
- A redo log is generated for each online tablespace conversion.
- Do not encrypt the SYSTEM and UNDO tablespaces concurrently with other tablespaces.
- You cannot use the transportable tablespace feature with Oracle Data Pump while you are encrypting a tablespace.
- You cannot run the ALTER TABLESPACE statement concurrently with the following features:
 - ADMINISTER KEY MANAGEMENT SET KEY SQL statement
 - FLASHBACK DATABASE SQL statement
- If you are using Oracle-managed files for the data files, then the encryption process rekeys the data files that are associated with the tablespace and then copies or moves them to the default Oracle-managed files location.
- You can add new files to the tablespace after you have encrypted it. Oracle Database reformats the new file with the new encryption key. Blocks will be encrypted using the new key.
- Previous operations that took place in the root or the PDB may require the control files to be cross-checked against the data dictionary before you can begin the online conversion process. An ORA-241 operation disallowed: control file is not yet checked against data dictionary error may occur. To resolve this problem, restart the root or PDB, and then try issuing the online conversion commands again.
- For security reasons, once online conversion processes a data file, Oracle will zero out the original data file before deletion. This prevents the database from leaving ghost data on disk sectors. However, there is a known limitation that can occur if you are performing an online tablespace conversion at the same time that Oracle Recovery Manager (Oracle RMAN) is validating files. The online tablespace conversion processes each file one at a time. If Oracle RMAN is validating a file at the same time that it is being processed by the online tablespace conversion, then Oracle RMAN could report a corruption problem (ORA-01578: ORACLE data block corrupted (file # , block #)). It does this because it sees the blocks that comprise the file as zero. This is a false alarm and you can ignore the error. If this occurs, then try running the Oracle RMAN validation process again.

Related Topics

• Supported Encryption and Integrity Algorithms
Oracle supports the AES, ARIA and DES algorithms.

Setting the Tablespace Encryption Default Algorithm
 The Tablespace_ENCRYPTION_DEFAULT_ALGORITHM applies to specific encryption scenarios.

6.9.2 Encrypting an Existing Tablespace with Online Conversion

To encrypt an existing tablespace with online conversion, use ALTER TABLESPACE with the ONLINE and ENCRYPT clauses.

 Connect to the united mode CDB root or isolated mode PDB as a user who has been granted the SYSDBA administrative privilege.

You must have the SYSDBA administrative privilege to work with the SYSTEM and SYSAUX tablespaces. Otherwise, connect with the SYSKM administrative privilege.

2. Ensure that the COMPATIBLE initialization parameter is set to 12.2.0.0 or later.

You can use the Show parameter command to check the current setting of a parameter.

3. Ensure that the database is open in read-write mode.

You can query the STATUS column of the V\$INSTANCE dynamic view to find if a database is open and the OPEN_MODE column of the V\$DATABASE view to find if it in read-write mode.

4. If necessary, open the database in read-write mode.

```
ALTER DATABASE OPEN READ WRITE;
```

Ensure that the auxiliary space is at least the same size as the largest data file of this tablespace.

This size requirement is because Oracle Database performs the conversion one file at a time. For example, if the largest data file of the tablespace is 32 GB, then ensure that you have 32 GB of auxiliary space. To find the space used by a data file, query the BYTES or BLOCKS column of the V\$DATAFILE dynamic performance view.

6. As a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege, create and open a master encryption key.

For example:

```
ADMINISTER KEY MANAGEMENT CREATE KEYSTORE 'TDE_wallet_location' IDENTIFIED BY TDE_wallet_password;
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
TDE_wallet_password;
ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY TDE_wallet_password WITH
BACKUP;
```

7. Run the ALTER TABLESPACE statement using the ENCRYPTION and ENCRYPT clauses to perform the encryption.

For example, for a non-Oracle managed files tablespace named users:

```
ALTER TABLESPACE users ENCRYPTION ONLINE USING 'AES256' ENCRYPT FILE NAME CONVERT = ('users.dbf', 'users enc.dbf');
```

In this example:

ENCRYPTION ONLINE USING 'AES256' ENCRYPT sets the statement to encrypt the tablespace users while it is online and assigns it the AES256 encryption

algorithm. If you omit the USING algorithm clause, then the default algorithm, AES256, is used. For the SYSTEM tablespace, you can use the ENCRYPT clause to encrypt the tablespace, but you cannot specify an encryption algorithm because it is encrypted with the existing database key the first time. After encrypting the SYSTEM tablespace, use the REKEY clause to specify the algorithm.

- FILE_NAME_CONVERT specifies one or more pairs of data files that are associated with the tablespace. The first name in the pair is an existing data file, and the second name is for the encrypted version of this data file, which will be created after the ALTER TABLESPACE statement successfully runs. If the tablespace has more than one data file, then you must process them all in this statement. Note the following:
 - Separate each file name with a comma, including multiple pairs of files. For example:

```
FILE_NAME_CONVERT = ('users1.dbf', 'users1_enc.dbf', 'users2.dbf',
'users2 enc.dbf')
```

You can specify directory paths in the FILE_NAME_CONVERT clause. For example, the following clause converts and moves the matching files of the tablespace from the dbs directory to the dbs/enc directory:

```
FILE NAME CONVERT = ('dbs', 'dbs/enc')
```

The FILE_NAME_CONVERT clause recognizes patterns. The following example converts the data files users_1.dbf and users_2.dbf to users_enc1.dbf and users_enc2.dbf:

```
FILE NAME CONVERT = ('users', 'users enc')
```

- In an Oracle Data Guard environment, include the name of the standby database data file in the FILE NAME CONVERT settings.
- If you are using Oracle-managed file mode, then the new file name is internally assigned, so this file name should not affect your site's file-naming standards. If you are using non-Oracle-managed file mode and if you omit the FILE_NAME_CONVERT clause, then Oracle Database internally assigns an auxiliary file name, and then later renames it back to the original name. This enables the encryption process to use the name that you had originally given the file to be encrypted. The renaming operation is effectively creating another copy of the file, hence it is slower than explicitly including the FILE_NAME_CONVERT clause. For better performance, include the FILE_NAME_CONVERT clause.
- You can find the data files for a tablespace by querying the V\$DATAFILE or V\$DATAFILE HEADER dynamic views.

By default, data files are in the <code>\$ORACLE_HOME/dbs</code> directory. If the data files are located there, then you do not have to specify a path.

After you complete the conversion, you can check the encryption status by querying the STATUS column of the V\$ENCRYPTED_TABLESPACES dynamic view. The ENCRYPTIONALG column of this view shows the encryption algorithm that is used. If the conversion process was interrupted, then you can resume it by running ALTER TABLESPACE with the FINISH clause. For example, if the primary data file converts but the standby data file does not, then you can run ALTER TABLESPACE ... FINISH on the standby database for the standby data files.

Related Topics

Best Practice after DBCA Creates an Encrypted Database
 After DBCA has created an encrypted stand-alone or Oracle Data Guard primary and standby database, you can implement Transparent Data Encryption (TDE) best practices.

- Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption To set the COMPATIBLE initialization parameter, you must edit the initialization parameter file for the database instance.
- Finishing an Interrupted Online Encryption Conversion
 If an online encryption process is interrupted, then you can complete the conversion by rerunning the ALTER TABLESPACE statement using the FINISH clause.

6.9.3 Rekeying an Existing Tablespace with Online Conversion

To rekey an existing tablespace that is online, you can use the REKEY clause of the ${\tt ALTER}$ TABLESPACE SQL statement.

Before you perform a rekey operation, be aware of the following:

- You cannot rekey the TEMP tablespace. If you want to assign a different encryption algorithm to a TEMP tablespace, then drop TEMP and recreate it with the correct encryption algorithm.
- Do not perform an online tablespace rekey operation with a master key operation concurrently. To find if any tablespaces are currently being rekeyed, issue the following query to find the rekey status of encrypted tablespaces:

```
SELECT TS#, ENCRYPTIONALG, STATUS FROM V$ENCRYPTED_TABLESPACES;
```

A status of REKEYING means that the corresponding tablespace is still being rekeyed. Do not rekey the master key while this status is in effect.

To rekey an existing tablespace with online conversion:

1. Connect to the united mode CDB root or isolated mode PDB as a user who has been granted the SYSDBA administrative privilege.

You must have the SYSDBA administrative privilege to work with the SYSTEM and SYSAUX tablespaces. Otherwise, connect with the SYSKM administrative privilege.

- **2.** Ensure that the following requirements are met:
 - The COMPATIBLE initialization parameter is set to 12.2.0.0 or later.
 - The database is open and in read-write mode.
 - A master encryption key has been created and is open.
- 3. Query the KEY_VERSION and STATUS columns of the V\$ENCRYPTED_TABLESPACES dynamic view to find the current status of the encryption algorithm used by the master encryption key.
- **4.** Perform the rekey operation, based on the status returned by the V\$ENCRYPTED_TABLESPACES dynamic view:
 - If the key version status of the tablespace is NORMAL, then specify the new algorithm of the online tablespace rekey.

For example:

```
ALTER TABLESPACE users ENCRYPTION USING 'AES192' REKEY FILE_NAME_CONVERT = ('users.dbf', 'users enc.dbf');
```

If the key version status is ENCRYPTING, DECRYPTING, or REKEYING, then use the FINISH clause.

For example:

ALTER TABLESPACE users ENCRYPTION ONLINE FINISH REKEY FILE_NAME_CONVERT = ('users.dbf', 'users enc.dbf');

5. If the ORA-00241 operation disallowed: control file inconsistent with data dictionary error appears, then restart the CDB root and then retry Step 4.

If the conversion process was interrupted, then you can resume it by running ALTER TABLESPACE with the FINISH clause.

Related Topics

- Encrypting an Existing Tablespace with Online Conversion
 To encrypt an existing tablespace with online conversion, use ALTER TABLESPACE with the ONLINE and ENCRYPT clauses.
- About Encryption Conversions for Existing Online Tablespaces
 You can encrypt, decrypt, or rekey existing user tablespaces, and the SYSTEM, SYSAUX,
 and UNDO tablespace when they are online.
- Finishing an Interrupted Online Encryption Conversion
 If an online encryption process is interrupted, then you can complete the conversion by rerunning the ALTER TABLESPACE statement using the FINISH clause.

6.9.4 Rekeying the SYSAUX and UNDO Tablespaces with Online Conversion

To rekey the SYSAUX and UNDO online tablespaces, you can use the REKEY clause of the ALTER TABLESPACE SQL statement.

1. Connect to the united mode CDB root or isolated mode PDB as a user who has been granted the SYSDBA administrative privilege.

You must have the SYSDBA administrative privilege to work with the SYSTEM and SYSAUX tablespaces. Otherwise, connect with the SYSKM administrative privilege.

- 2. Ensure that the following requirements are met:
 - The COMPATIBLE initialization parameter is set to 12.2.0.0 or later.
 - The database is open and in read-write mode.
 - A master encryption key has been created and is open.
- 3. Depending on how the _TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM parameter is set, perform the rekey operation as follows:
 - If _TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM is set to AES256, then you only need the REKEY clause in the ALTER TABLESPACE statement for SYSAUX or UNDO. For example:

ALTER TABLESPACE SYSAUX ENCRYPTION REKEY;

• If _TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM is not set, then you must manually specify the AES256 algorithm. For example:

ALTER TABLESPACE SYSAUX ENCRYPTION USING 'AES256' REKEY;

Related Topics

About Encryption Conversions for Existing Online Tablespaces
 You can encrypt, decrypt, or rekey existing user tablespaces, and the SYSTEM,
 SYSAUX, and UNDO tablespace when they are online.

6.9.5 Decrypting an Existing Tablespace with Online Conversion

To decrypt an existing tablespace with online conversion, you can use the ALTER TABLESPACE SQL statement with DECRYPT clause.

 Connect to the united mode CDB root or isolated mode PDB as a user who has been granted the SYSDBA administrative privilege.

You must have the SYSDBA administrative privilege to work with the SYSTEM and SYSAUX tablespaces. Otherwise, connect with the SYSKM administrative privilege.

- 2. Ensure that the following requirements are met:
 - The COMPATIBLE initialization parameter is set to 12.2.0.0 or later.
 - The database is open and in read-write mode.
 - A master encryption key has been created and is open.
 - There is enough auxiliary space to complete the decryption.
- 3. Run the ALTER TABLESPACE SQL statement with the DECRYPT clause.

For example:

```
ALTER TABLESPACE users ENCRYPTION ONLINE DECRYPT FILE_NAME_CONVERT = ('users enc.dbf', 'users.dbf');
```

In this specification:

- When you specify the files to decrypt, enter them in the reverse order in which they were originally encrypted. That is, first enter the name of the encrypted file (users enc.dbf), followed by the data file (users.dbf).
- Do not provide an algorithm key for the decryption.

If the conversion process was interrupted, then you can resume it by running ALTER TABLESPACE with the FINISH clause.

Related Topics

- Encrypting an Existing Tablespace with Online Conversion

 To encrypt an existing tablespace with online conversion, use ALTER TABLESPACE with the ONLINE and ENCRYPT clauses.
- Finishing an Interrupted Online Encryption Conversion
 If an online encryption process is interrupted, then you can complete the conversion by rerunning the ALTER TABLESPACE statement using the FINISH clause.

6.9.6 Finishing an Interrupted Online Encryption Conversion

If an online encryption process is interrupted, then you can complete the conversion by rerunning the ALTER TABLESPACE statement using the FINISH clause.

An interrupted encryption process (encryption, rekey, or decryption) can be, for example, an ORA-28425: missing a valid FILE_NAME_CONVERT clause error in the FILE_NAME_CONVERT clause of the ALTER TABLESPACE SQL statement. Other examples of interrupted processes are if the conversion skips a data file, which can happen if there is an error when an Oracle DataBase WRiter (DBWR) process offlines a data file, or if there is not enough space for the auxiliary file. The tablespace should be operational even if you do not rerun the ALTER TABLESPACE statement with the FINISH clause.

In addition to interrupted encryption processes, the tablespace encryption process can fail during the period when the status is <code>ENCRYPTING</code>. In this case, you can either decrypt the tablespace back to its original state, or you can resume the encryption by using the <code>ENCRYPTION ONLINE FINISH ENCRYPT clause of ALTER TABLEPSPACE</code>.

- 1. Connect to the united mode CDB root or isolated mode PDB as a user who has been granted the SYSDBA or SYSKM administrative privilege.
 - You must have the SYSDBA administrative privilege to work with the SYSTEM and SYSAUX tablespaces. Otherwise, connect with the SYSKM administrative privilege.
- 2. Query the V\$ENCRYPTED TABLESPACES to check the STATUS column for the tablespace.
 - If the STATUS column reports ENCRYPTING, DECRYPTING, or REKEYING, then re-run the ALTER TABLESPACE statement with the FINISH clause, as described in this procedure. If the STATUS reports NORMAL, then you can rerun ALTER TABLESPACE without the FINISH clause.
 - You can find the tablespace name that matches the TS# and TABLESPACE_NAME columns by querying the V\$DATAFILE HEADER view.
- 3. If necessary query the following additional views to find information about the tablespace whose online conversion was interrupted:
 - DBA_TABLESPACES to find if the STATUS of the tablespace indicates if it is online or offline.
 - V\$ENCRYPTED_TABLESPACES to find if the STATUS of the tablespace indicates if it is encrypted, and what the KEY VERSION of the encryption key is.
 - V\$DATAFILE and V\$DATAFILE_HEADER to find the data files that are associated with a tablespace.
- 4. Run the ALTER TABLESPACE statement using the FINISH clause.

Examples are as follows:

For an encryption operation:

```
ALTER TABLESPACE users ENCRYPTION ONLINE FINISH ENCRYPT FILE_NAME_CONVERT = ('users.dbf', 'users_enc.dbf');
```

For a decryption operation:

```
ALTER TABLESPACE users ENCRYPTION ONLINE FINISH DECRYPT FILE_NAME_CONVERT = ('users enc.dbf', 'users.dbf');
```


Note the order in which the files are specified: first, the name of the encrypted file, and then the name of the data file. (In the encryption operation, the name of the data file is specified first, followed by the name of the encrypted file.)

For a rekey operation:

```
ALTER TABLESPACE users ENCRYPTION ONLINE FINISH REKEY FILE_NAME_CONVERT = ('users.dbf', 'users enc.dbf');
```

You cannot specify an algorithm when you use the FINISH clause in an ALTER TABLESPACE statement.

5. To check the conversion, query the STATUS column of the V\$ENCRYPTED TABLESPACES view.

The status should be NORMAL. In an Oracle Data Guard environment, if the database does not have NORMAL as the STATUS, then run the ALTER TABLESPACE ... FINISH statement on the primary or the standby data file that did not successfully convert.

6.10 Rekeying an Encrypted Tablespace

Rekying an already encrypted tablespace enables you to change the data encryption keys from one algorithm to another, for example from AES128 to AES256.

Find the tablespaces that use the earlier algorithm.

For example, to find tablespaces that use the AES128:

```
SELECT TSVIEW.CON_ID, TSVIEW.NAME AS TS_NAME, ETSVIEW.ENCRYPTIONALG
AS ENCRYPTION_ALG FROM V$TABLESPACE TSVIEW ,
V$ENCRYPTED_TABLESPACES ETSVIEW
WHERE TSVIEW.TS# = ETSVIEW.TS#
AND ETSVIEW.ENCRYPTEDTS = 'YES'
AND ETSVIEW.ENCRYPTIONALG = 'AES128';
```

Output similar to the following appears:

```
CON_ID TS_NAME ENCRYPTION_ALG

1 ENCRYPTED TS CDB AES128
```

2. Re-encrypt each tablepace that is listed in the output.

For example, to migrate the ENCRYPTED_TS_CDB tablespace to use the latest supported algorithm, which is AES256:

```
ALTER TABLESPACE ENCRYPTED TS CDB ENCRYPTION REKEY;
```

3. To verify the re-encryption:

SELECT C.NAME AS PDB_NAME, T.NAME AS TBS_NAME, E.ENCRYPTIONALG AS ALG, E.CIPHERMODE AS "MODE", E.STATUS FROM V\$TABLESPACE T, V\$ENCRYPTED TABLESPACES E, V\$CONTAINERS C


```
WHERE E.TS# = T.TS# AND E.CON_ID = T.CON_ID AND E.CON_ID = C.CON_ID ORDER BY E.CON ID, T.NAME;
```

6.11 Creating an Encrypted Database Using DBCA

You can use DBCA to create an encrypted database in both single instance multitenant and Oracle Data Guard environments.

- Using DBCA to Create an Encrypted Database
 Before you run DBCA to create an encrypted database, you must create the WALLET_ROOT directory.
- Using DBCA to Create an Oracle Data Guard Standby Database from an Encrypted Primary Database

Before you run DBCA to create the encrypted database in an Oracle Data Guard environment, you must copy the wallet from the primary to the standby database, and then create the WALLET ROOT directory.

• Best Practice after DBCA Creates an Encrypted Database
After DBCA has created an encrypted stand-alone or Oracle Data Guard primary and
standby database, you can implement Transparent Data Encryption (TDE) best practices.

6.11.1 Using DBCA to Create an Encrypted Database

Before you run DBCA to create an encrypted database, you must create the WALLET_ROOT directory.

- Log into the host where DBCA will create the database with the united mode PDBs.
 DBCA cannot create PDBs in isolated mode.
- 2. Create the WALLET_ROOT directory.

For example:

```
mkdir -pvm700 /etc/ORACLE/KEYSTORES/finance
```

When you run DBCA in the next step, DBCA will create the WALLET_ROOT/tde subdirectory.

3. Run the dbca -createDatabase command to create the encrypted database, and include the appropriate TDE-related parameters.

For example:

```
-configureTDE TRUE
-tdeWalletRoot /etc/ORACLE/KEYSTORES/finance
-tdeWalletLoginType LOCAL_AUTO_LOGIN
-TdeWalletPassword tde_password
-encryptPDBTablespaces ALL
```

If you omit the following values, then DBCA uses their defaults, as follows:

- tdeAlgorithm: The default is AES256 with XTS cipher mode.
- encryptTablespaces: Only the USERS tablespace is encrypted in the CDB\$ROOT.

• encryptPDBTablespaces: The SYSTEM, SYSAUX and USERS tablespaces are encrypted. The TEMP and UNDO tablespaces remain unencrypted. The ALL setting encrypts all tablespaces in the PDB.

If you add -initParameter TABLESPACE_ENCRYPTION = AUTO_ENABLE, then all tablespaces in CDB\$ROOT and PDB are encrypted. This directive is incompatible with setting -encryptPDBTablespaces and -encryptTablespaces.

Related Topics

Oracle Multitenant Administrator's Guide

6.11.2 Using DBCA to Create an Oracle Data Guard Standby Database from an Encrypted Primary Database

Before you run DBCA to create the encrypted database in an Oracle Data Guard environment, you must copy the wallet from the primary to the standby database, and then create the \mathtt{WALLET} ROOT directory.

- 1. Log into the server where DBCA will create the standby database from an encrypted primary database.
 - DBCA cannot create a standby database from an encrypted primary database if the REDO_TRANSPORT_USER initialization parameter is set to a common user.
- 2. Copy the TDE wallet from the primary host to the standby host.
 - When you run DBCA, you will specify this wallet location when you set the primaryDBTdeWallet parameter.
- Create the WALLET ROOT directory.

For example:

```
mkdir -pvm700 /etc/ORACLE/KEYSTORES/finance
```

When you run DBCA in the next step, DBCA will create the $\mbox{WALLET_ROOT}/\mbox{tde}$ subdirectory.

4. Run the dbca -createDuplicateDB command to create the encrypted standby database, and include the appropriate TDE-related parameters.

For example:

```
dbca -silent -createDuplicateDB -createAsStandby
-configureTDE TRUE
  -tdeWalletRoot /etc/ORACLE/KEYSTORES/finance
  -primaryDBTdeWallet /tmp
  -tdeWalletLoginType LOCAL_AUTO_LOGIN
  -sourceTdeWalletPassword tde_password
  -TdeWalletPassword tde password
```

Related Topics

Oracle Multitenant Administrator's Guide

6.11.3 Best Practice after DBCA Creates an Encrypted Database

After DBCA has created an encrypted stand-alone or Oracle Data Guard primary and standby database, you can implement Transparent Data Encryption (TDE) best practices.

1. Add the wallet password to another (local) auto-open wallet so that the wallet password on the SQL*Plus command line can be replaced by EXTERNAL STORE.

This helps with separation of duties and automation. In Oracle Data Guard, you should run both commands on the primary and standby databases.

```
$ mkdir -pvm700 WALLET_ROOT/tde_seps

SQL> ADMINISTER KEY MANAGEMENT ADD SECRET 'wallet_password'
FOR CLIENT 'TDE_WALLET' TO [LOCAL] AUTO-LOGIN KEYSTORE 'wallet_root/
tde seps';
```

2. Add a tag to the TDE master key for the PDB.

When DBCA creates a TDE master key for the PDB, it does not add a tag to this key. The following <code>ADMINISTER KEY MANAGEMENT</code> command adds the tag to the PDB. The tag consists of the string $pdb_name\ date\ time\ (IN\ UTC)$. The date and time is derived from the time when the key was first activated, not the current time. Run this command in the primary PDB.

```
SELECT ' ADMINISTER KEY MANAGEMENT

SET TAG '''||SYS_CONTEXT('USERENV', 'CON_NAME')||' '||TO_CHAR

(SYS_EXTRACT_UTC (ACTIVATION_TIME),

'YYYY-MM-DD HH24:MI:SS"Z"')||''' FOR '''||KEY_ID||'''

FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE WITH BACKUP;'

AS "SET TAG COMMAND" FROM V$ENCRYPTION KEYS;
```

For Oracle Data Guard, copy the primary wallet (with the tagged PDB key) to the standby side. If you are using local auto-login wallets, then delete and recreate the local auto-open wallet on the standby database.

3. Encrypt the data dictionary.

This is a Data Guard transaction and as such, it is automatically applied to the standby database. As a user with the SYSKM administrative privilege, perform the following ALTER DATABASE DICTIONARY command:

```
ALTER DATABASE DICTIONARY ENCRYPT CREDENTIALS CONTAINER = CURRENT;
```

- 4. Optionally, you can isolate the encrypted PDB with a single command.
 - **a.** From within the primary PDB:

```
ADMINISTER KEY MANAGEMENT FORCE ISOLATE KEYSTORE IDENTIFIED BY "new_pdb_wallet_password" FROM ROOT KEYSTORE FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE WITH BACKUP;
```


You can run this command without knowing the root wallet password, and the root administrator will not know the new isolated wallet password. This command performs the following actions:

- Creates the WALLET ROOT/pdb guid/tde directrory
- Creates a wallet in the WALLET ROOT/pdb guid/tde directory
- Moves the PDB keys from the root wallet to the PDB wallet
- Sets the TDE CONFIGURATION parameter for the PDB to FILE

Next, create an isolated (local) auto-open wallet; from within the primary PDB:

```
ADMINISTER KEY MANAGEMENT CREATE [LOCAL] AUTO_LOGIN KEYSTORE FROM KEYSTORE IDENTIFIED BY "new_pdb_wallet_password";
```

b. From within the isolated PDB, create a directory and another local auto-open wallet that enables you to hide the isolated wallet password from the SQL*Plus command line.

```
SELECT 'HOST MKDIR -PVM700 '||B.VALUE||'/'||A.GUID||'/TDE_SEPS'
AS "CREATE DIRECTORY FOR IDENTIFIED BY EXTERNAL STORE (IBES)"
FROM V$PDBS A, V$PARAMETER B WHERE B.NAME = 'WALLET_ROOT';

SELECT 'ADMINISTER KEY MANAGEMENT ADD SECRET ''NEW-PDB-WALLET-PWD''
FOR CLIENT ''TDE_WALLET'' TO LOCAL AUTO_LOGIN KEYSTORE '''||
B.VALUE||'/'||A.GUID||'/TDE_SEPS'''
AS "CREATE ISOLATED WALLET FOR IBES"
FROM V$PDBS A, V$PARAMETER B WHERE B.NAME = 'WALLET ROOT';
```

6.12 Encryption Conversions for Existing Databases

You can encrypt both offline and online databases.

- About Encryption Conversions for Existing Databases
 The encryption conversion of an entire database encrypts all tablespaces, including the Oracle-supplied SYSTEM, SYSAUX, UNDO, and TEMP tablespaces.
- Encrypting an Existing Database with Offline Conversion
 When you encrypt an existing database with offline conversion, for the Oraclemanaged tablespaces, you do not specify an encryption algorithm.
- Encrypting an Existing Database with Online Conversion
 When you encrypt an existing database with online conversion, you do not specify an encryption algorithm.

6.12.1 About Encryption Conversions for Existing Databases

The encryption conversion of an entire database encrypts all tablespaces, including the Oracle-supplied SYSTEM, SYSAUX, UNDO, and TEMP tablespaces.

Note the following:

• If you are using Database Configuration Assistant (DBCA) to create or configure a database, then you can create a TDE wallet in the database as part of the creation

or configuration process. When you drop a database by using DBCA, any TDE wallets that are in this database are also removed. Important: Before you drop a database by using DBCA, and if it has any local TDE wallets, then back these wallets up to a secure location. If the database has been migrated to use Oracle Key Vault, then be aware that its TDE encryption keys reside in the Oracle Key Vault server. It is the responsibility of the Oracle Key Vault administrator to back up Oracle Key Vault.

- To perform the encryption, you can use the offline and online functionality of the tablespace encryption conversions.
- You can encrypt any or all of the Oracle-supplied tablespaces, and in any order. The
 encryption of the Oracle-supplied tablespaces has no impact on the encryption of usercreated tablespaces.
- When you encrypt the Oracle-supplied tablespaces, Oracle Database prevents the keystore from being closed.
- You cannot encrypt an existing temporary tablespace, but you can create an encrypted temporary tablespace, configure the database to use that new encrypted temporary tablespace as the default temporary tablespace, and then drop the old clear-text temporary tablespace.
- The UNDO and TEMP metadata that is generated from sensitive data in an encrypted tablespace is already automatically encrypted. Therefore, encrypting UNDO and TEMP is optional.
- The performance effect of encrypting all the tablespaces in a database depends on the workload and platform. Many modern CPUs provide built-in hardware acceleration, which results in a minimal performance impact.
- In a multitenant environment, you can encrypt any tablespaces in any pluggable databases (PDBs), including the Oracle-supplied tablespaces. However, the keystore in the CDB root must be open at all times so that a PDB can open its keystore. You can check the status of whether a keystore is open by querying the STATUS column of the V\$ENCRYPTION WALLET view

6.12.2 Encrypting an Existing Database with Offline Conversion

When you encrypt an existing database with offline conversion, for the Oracle-managed tablespaces, you do not specify an encryption algorithm.

- 1. Connect to the united mode CDB root or isolated mode PDB as a user who has been granted the SYSDBA administrative privilege.
 - You must have the SYSDBA administrative privilege to work with the SYSTEM and SYSAUX tablespaces. Otherwise, connect with the SYSKM administrative privilege.
- 2. Mount the database.

STARTUP MOUNT

3. As a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege, open the keystore.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY keystore_password;

4. Run the ALTER TABLESPACE SQL statement to encrypt the SYSTEM, SYSAUX, and UNDO tablespaces. Do not encrypt the SYSTEM tablespace concurrently with the encryption of other tablespaces.

For example, to encrypt the SYSTEM tablespace:

ALTER TABLESPACE SYSTEM ENCRYPTION OFFLINE ENCRYPT;

- 5. Open the CDB root or the PDB.
 - For a CDB, to open in read/write mode, for example:

ALTER DATABASE OPEN READ WRITE;

For a PDB:

ALTER PLUGGABLE DATABASE pdb name OPEN READ WRITE;

6. Run the ALTER TABLESPACE SQL statement to encrypt other user tablespaces.

Alternatively, you can proceed to the next step and open the database first, and then perform the steps to encrypt an existing user-defined tablespace with offline conversion.

- 7. Open the CDB root or the PDB.
 - For a CDB:

ALTER DATABASE OPEN;

For a PDB:

ALTER PLUGGABLE DATABASE pdb name OPEN;

After you have encrypted the tablespace, if you want to use a different encryption algorithm (change the TDE master encryption key) for the SYSTEM, SYSAUX, and UNDO tablespaces, then you must use online conversion. In addition to AES128, supported encryption algorithms are AES192 and AES256, in addition to other algorithms such as ARIA and GOST.

Note:

Starting with Oracle Database 23ai, the Transparent Data Encryption (TDE) decryption libraries for the GOST and SEED algorithms are deprecated, and encryption to GOST and SEED are desupported. Starting with Oracle Database 23ai, the Transparent Data Encryption (TDE) encryption libraries for the GOST and SEED algorithms are desupported and removed. The GOST and SEED decryption libraries are deprecated. Both are removed on HP Itanium platforms.

GOST 28147-89 has been deprecated by the Russian government, and SEED has been deprecated by the South Korean government. If you need South Korean government-approved TDE cryptography, then use ARIA instead. If you are using GOST 28147-89, then you must decrypt and encrypt with another supported TDE algorithm. The decryption algorithms for GOST 28147-89 and SEED are included with Oracle Database 23ai, but are deprecated, and the GOST encryption algorithm is desupported with Oracle Database 23ai. If you are using GOST or SEED for TDE encryption, then Oracle recommends that you decrypt and encrypt with another algorithm before upgrading to Oracle Database 23ai. However, with the exception of the HP Itanium platform, the GOST and SEED decryption libraries are available with Oracle Database 23ai, so you can also decrypt after upgrading.

Related Topics

- Encrypting an Existing User-Defined Tablespace with Offline Conversion
 To encrypt an existing tablespace with offline conversion, you can use the ALTER
 TABLESPACE SQL statement with the OFFLINE and ENCRYPT clauses.
- Changing the TDE Master Encryption Key for a Tablespace
 You can use the ENCRYPT and REKEY clauses of the ALTER TABLESPACE statement to
 encrypt a tablespace.
- Supported Encryption and Integrity Algorithms
 Oracle supports the AES, ARIA and DES algorithms.

6.12.3 Encrypting an Existing Database with Online Conversion

When you encrypt an existing database with online conversion, you do not specify an encryption algorithm.

The reason that you do not need to specify an encryption algorithm the first time you perform the encryption is that the tablespaces that you must use to encrypt the database are automatically encrypted with the database key. If you want to change the algorithm, then you can issue the ALTER TABLESPACE ENCRYPTION REKEY SQL statement after the initial encryption.

- 1. Perform the following tasks, which are performed when encrypting an existing tablespace with online conversion:
 - a. Connect as a user who has been granted the SYSDBA administrative privilege.
 - **b.** Ensure that the COMPATIBLE parameter is set to 12.2.0.0 or later.
 - c. Ensure that the database is open in read-write mode.
 - **d.** Ensure that you have enough auxiliary space to complete the encryption.
 - e. Back up the tablespaces that you must encrypt.
 - f. Open the keystore.
- 2. Run the ALTER TABLESPACE SQL statement to encrypt the SYSTEM, SYSAUX, and UNDO tablespaces. Do not specify an algorithm, and do not encrypt the SYSTEM tablespace concurrently with the encryption of other tablespaces.

For example, to encrypt the SYSTEM tablespace:

```
ALTER TABLESPACE SYSTEM ENCRYPTION ONLINE ENCRYPT FILE_NAME_CONVERT=('system01.dbf','system01_enc.dbf');
```

- 3. Create a temporary tablespace.
 - a. Create a new (encrypted) TEMP tablespace with the identical characteristics as the original TEMP tablespace, as follows:

```
SELECT ' CREATE TEMPORARY TABLESPACE '
||tablespace_name||'_ENC tempfile '''
||substr(file_name,1,length(file_name)-4)
||'_enc.dbf'' size '
||bytes||' ENCRYPTION USING ''AES256'' ENCRYPT;'
AS " Create new encrypted TEMP tablespace"
FROM DBA TEMP FILES;
```


Alternatively, you could extract the original parameters by running DBMS_METADATA.GET_DDL. If you omit the USING algorithm clause, then Oracle Database applies the default algorithm.

- **b.** Run the command (that is, the output of the SELECT statement).
- c. Change the database default temporary tablespace to the new encrypted $\ensuremath{\mathtt{TEMP}}$ tablespace.

ALTER DATABASE DEFAULT TEMPORARY TABLESPACE temp enc;

d. Drop the original TEMP tablespace.

DROP TABLESPACE TEMP INCLUDING CONTENTS AND DATAFILES;

Optionally, you can rename temp enc to TEMP.

Related Topics

- Encrypting an Existing Tablespace with Online Conversion

 To encrypt an existing tablespace with online conversion, use ALTER TABLESPACE with the ONLINE and ENCRYPT clauses.
- Changing the TDE Master Encryption Key for a Tablespace
 You can use the ENCRYPT and REKEY clauses of the ALTER TABLESPACE statement to
 encrypt a tablespace.

7

Managing the Keystore and the Master Encryption Key

You can modify settings for the keystore and TDE master encryption key, and store Oracle Database and store Oracle GoldenGate secrets in a keystore.

Managing the Keystore

You can perform maintenance activities on keystores such as changing passwords, and backing up, merging, and moving keystores.

- Managing the TDE Master Encryption Key
 You can manage the TDE master encryption key in several ways.
- Transparent Data Encryption Data Dynamic and Data Dictionary Views
 You can query a set of dynamic and data dictionary views to find more information about
 Transparent Data Encryption (TDE) data.

7.1 Managing the Keystore

You can perform maintenance activities on keystores such as changing passwords, and backing up, merging, and moving keystores.

- Performing Operations That Require a Keystore Password
 Many ADMINISTER KEY MANAGEMENT operations require access to a keystore password, for both TDE wallets and external keystores.
- Configuring Auto-Open Connections into External Key Managers
 An external key manager can be configured to use the auto-login capability.
- Changing the Oracle Key Vault Password
 To change the password of Oracle Key Vault, you use okvutil, which is part of the
 Oracle Key Vault endpoint software on the database host.
- Configuring an External Store for a Keystore Password
 An external store for a keystore password stores the keystore password in a centrally accessed and managed location.
- Backing Up Password-Protected TDE Wallets
 When you back up a password-protected TDE wallet, you can create a backup identifier string to describe the backup type.
- How the V\$ENCRYPTION_WALLET View Interprets Backup Operations
 The BACKUP column of the V\$ENCRYPTION_WALLET view indicates a how a copy of the keystore was created.
- Backups of the External Keystore
 You cannot use Oracle Database to back up external keystores.
- Merging TDE Wallets
 You can merge TDE wallets in a variety of ways.

Moving a TDE Wallet to a New Location

Automatic Storage Management.

- You move a TDE wallet to a new location after you have updated the WALLET_ROOT parameter.
- Moving a TDE Wallet Out of Automatic Storage Management
 You can use the ADMINISTER KEY MANAGEMENT statement to move a TDE wallet out
- Migrating from a TDE Wallet to Oracle Key Vault
 You can migrate between password-protected TDE wallets and external keystores
 in Oracle Key Vault.
- Migration of Keystores to and from Oracle Key Vault
 You can use Oracle Key Vault to migrate both TDE wallets and external keystores
 to and from Oracle Key Vault.
- Configuring Keystores for Automatic Storage Management
 You can store a TDE wallet on an Automatic Storage Management (ASM) disk group.
- Managing Updates to the PKCS#11 Library
 Periodically, you may need to update the endpoint shared PKCS#11 library.
- Backup and Recovery of Encrypted Data
 For TDE wallets, you cannot access encrypted data without the TDE master encryption key.
- Dangers of Deleting TDE Wallets
 Oracle strongly recommends that you do not delete TDE wallets.
- Features That Are Affected by Deleted Keystores

 Some features can be adversely affected if a keystore is deleted and a TDE master encryption key residing in that keystore is later needed.

7.1.1 Performing Operations That Require a Keystore Password

Many ADMINISTER KEY MANAGEMENT operations require access to a keystore password, for both TDE wallets and external keystores.

In some cases, a keystore depends on an auto-login TDE wallet before the operation can succeed. Auto-login TDE wallets open automatically when they are configured and a key is requested. They are generally used for operations where the TDE wallet could be closed but a database operation needs a key (for example, after the database is restarted). Because the auto-login TDE wallet opens automatically, it can be retrieved to perform a database operation without manual intervention. However, some keystore operations that require the keystore password cannot be performed when the auto-login keystore is open. The auto-login TDE wallet must be closed and the password-protected keystore must be opened for the keystore operations that require a password.

In a multitenant environment, the re-opening of keystores affects other PDBs. For example, an auto-login TDE wallet in the root must be accessible by the PDBs in the CDB for this root.

You can temporarily open the TDE wallet by including the FORCE KEYSTORE clause in the ADMINISTER KEY MANAGEMENT statement when you perform the following operations: rotating a TDE wallet password; creating, using, rekeying, tagging, importing, exporting, migrating, or reverse migrating encryption keys; opening or backing up TDE wallet; adding, updating, or deleting secret TDE wallets. In a

multitenant environment, if no TDE wallet is open in the root, then FORCE KEYSTORE opens the password-protected TDE wallet in the root.

7.1.2 Configuring Auto-Open Connections into External Key Managers

An external key manager can be configured to use the auto-login capability.

- About Auto-Open Connections into External Key Managers
 An auto-open connection into an external key manager stores the external keystore credentials in an auto-login keystore.
- Configuring an Auto-Open Connection into an External Key Manager
 To configure the auto-open connection, you must use the ADMINISTER KEY MANAGEMENT statement to add or update a client secret to authenticate to the external key manager.

7.1.2.1 About Auto-Open Connections into External Key Managers

An auto-open connection into an external key manager stores the external keystore credentials in an auto-login keystore.

You can configure a connection to an external key manager so that the database can open the keystore without prompting for the keystore password. This configuration is essential in Oracle Real Application Clusters (Oracle RAC) environments, and is highly recommended for Oracle Data Guard standby databases. Be aware that this configuration reduces the security of the system as a whole. However, this configuration does support unmanned or automated operations, and is useful in deployments where TDE-enabled databases that are enrolled into an external keystore for key management can start automatically.

Be aware that running the query <code>SELECT * FROM V\$ENCRYPTION_WALLET</code> will automatically open an auto-login external keystore. For example, suppose you have an auto-login external keystore configured. If you close the keystore and query the <code>V\$ENCRYPTION_WALLET</code> view, then the output will indicate that a keystore is open. This is because <code>V\$ENCRYPTION_WALLET</code> opened up the auto-login external keystore and then displayed the status of the auto-login keystore.

To enable the auto-login capability for an external keystore, you must store the external keystore's credentials in an auto-login wallet.

When you use the ADMINISTER KEY MANAGEMENT statement, there are conceptually two sets of commands that act on client secrets:

- ADMINISTER KEY MANAGEMENT commands that act on the wallet that is currently in use (in other words, a wallet that contains an active TDE master encryption key).
- ADMINISTER KEY MANAGEMENT commands that act on a wallet that is not currently being
 used to hold the active TDE master encryption key. Oracle recommends that you use this
 approach when you configure an auto-login external keystore.

7.1.2.2 Configuring an Auto-Open Connection into an External Key Manager

To configure the auto-open connection, you must use the ADMINISTER KEY MANAGEMENT statement to add or update a client secret to authenticate to the external key manager.

Before you begin this procedure, ensure that you have configured the external keystore.

In this procedure, the wallet that is created does not contain any keys. It only holds the client secret. So, when you query the V\$ENCRYPTION WALLET dynamic view for this wallet, the

STATUS column shows OPEN_NO_MASTER_KEY rather than OPEN, because the wallet only contains the client secret.

1. Reconfigure the WALLET_ROOT parameter in the init.ora file to include the location of the TDE wallet, if it is not already present.

The TDE wallet location may already be present if you had previously migrated to using the external key manager.

For example:

WALLET ROOT=/etc/ORACLE/WALLETS/orcl

2. Add or update the secret in the TDE wallet.

The secret is the external keystore password and the client is the <code>OKV_PASSWORD</code>. <code>OKV_PASSWORD</code> is an Oracle-defined client name that is used to represent the external key manager password as a secret in the TDE wallet.

For example:

```
ADMINISTER KEY MANAGEMENT ADD SECRET 'external_key_manager_password' FOR CLIENT 'OKV_PASSWORD' TO LOCAL AUTO_LOGIN KEYSTORE TDE_wallet_location WITH BACKUP;
```

In this example:

• TDE_wallet_location is the location of the TDE wallet within the WALLET_ROOT location that you just defined in Step 1.

For the CDB root and for any PDB that is configured in united mode, the value to use for the TDE wallet location location is WALLET ROOT/tde.

For any PDB that is configured in isolated mode, the value to use for the $TDE_wallet_location$ location is $WALLET_ROOT/pdb_guid/tde$. When you are in the PDB, run the following query to find this GUID: SELECT GUID FROM V\$PDBS;

• LOCAL creates a local auto-login wallet file, <code>cwallet.sso</code>, to hold the credentials for the external key manager. This wallet is tied to the host on which it was created.

For an Oracle Real Application Clusters environment, omit the LOCAL keyword, because each Oracle RAC node has a different host name, yet they all use the same external key manager. If you configure a local auto-login wallet for the Oracle RAC instance, then only the first Oracle RAC node, where the <code>cwallet.sso</code> file was created, would be able to access the external key manager credentials. If you try to open the TDE wallet from another node instead of from that first node, there would be a problem auto-opening <code>cwallet.sso</code>, and so it would result in a failure to auto-open the auto-login external keystore. This restriction applies if you are using a shared location to hold the <code>cwallet.sso</code> file for the Oracle RAC cluster, because using <code>LOCAL</code> only works if you have a separate <code>cwallet.sso</code> file (containing the same credentials) on each node of the Oracle RAC environment.

At this stage, the next time a TDE operation runs, the external key manager auto-login TDE wallet opens automatically. An example of a TDE operation is to query the V\$ENCRYPTION WALLET view, for example:

```
SELECT * FROM V$ENCRYPTION WALLET;
```


7.1.3 Changing the Oracle Key Vault Password

To change the password of Oracle Key Vault, you use <code>okvutil</code>, which is part of the Oracle Key Vault endpoint software on the database host.

- 1. Log in to the database instance as a user who has been granted the ADMINISTER KEY MANAGEMENT OF SYSKM privilege.
- 2. Close the external keystore.
 - Close the connection to the external key manager:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE
IDENTIFIED BY Oracle Key Vault password | EXTERNAL STORE CONTAINER = ALL;
```

If the keystore was auto-opened by the database, then close the connection to Oracle Key Vault as follows:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE CONTAINER = ALL;
```

3. Change the Oracle Key Vault password.

```
WALLET_ROOT/okv/bin/okvutil changepwd -t wallet -l WALLET_ROOT/okv/ssl
```

- Open the external keystore.
 - For example, for Oracle Key Vault:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN FORCE KEYSTORE IDENTIFIED BY new Oracle Key Vault pwd CONTAINER =ALL;
```

 If the old Oracle Key Vault password was stored in a [local] auto-open wallet in the WALLET_ROOT/tde_seps directory, then update the password using the following syntax:

```
ADMINISTER KEY MANAGEMENT UPDATE SECRET 'new-Oracle_Key_Vault_password' FOR CLIENT 'Oracle_Key_Vault_password" TO [LOCAL] AUTO_LOGIN KEYSTORE 'WALLET ROOT/tde seps;
```

Then you can open the connection to Oracle Key Vault as follows:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN

[FORCE KEYSTORE] IDENTIFIED BY EXTERNAL STORE CONTAINER = ALL;
```

7.1.4 Configuring an External Store for a Keystore Password

An external store for a keystore password stores the keystore password in a centrally accessed and managed location.

- About Configuring an External Store for a Keystore Password
 An external store for a keystore password allows you to easily remove that keystore password from the ADMINISTER KEY MANAGEMENT command line.
- Configuring the External Keystore Password Store with WALLET_ROOT
 When you configure TDE by using the WALLET_ROOT parameter, the external keystore
 password store is auto-discovered in the WALLET_ROOT/tde_seps directory.

When to Use the EXTERNAL STORE Clause After Configuration
 After you configure the external store for a keystore password, you can use the EXTERNAL STORE clause in the ADMINISTER KEY MANAGEMENT statement.

7.1.4.1 About Configuring an External Store for a Keystore Password

An external store for a keystore password allows you to easily remove that keystore password from the ADMINISTER KEY MANAGEMENT command line.

This feature implements separation of duties between database administrators and key administrators. It is also useful for situations in which you use automated tools to perform Transparent Data Encryption operations that require a password, when the scripts that run the automated tools include hard-coded password. To avoid hard-coding the password in a script, you can store this password in an external store on the database server. In a multitenant environment, different PDBs can make use of the external store.

In a multitenant environment, all PDBs in united mode use the hidden password of the root container. In isolated mode, each PDB can have its own keystore password in its own external store.

Related Topics

Storing Oracle Database Secrets in Isolated Mode
 Secrets are data that support internal Oracle Database features that integrate
 external clients such as Oracle GoldenGate into the database.

7.1.4.2 Configuring the External Keystore Password Store with WALLET ROOT

When you configure TDE by using the <code>WALLET_ROOT</code> parameter, the external keystore password store is auto-discovered in the $WALLET_ROOT/tde_seps$ directory.

Run the ADMINISTER KEY MANAGEMENT statement by using the following syntax:

```
ADMINISTER KEY MANAGEMENT ADD SECRET 'keystore_password'
FOR CLIENT 'TDE_WALLET|OKV_PASSWORD'
TO [LOCAL] AUTO LOGIN KEYSTORE 'WALLET ROOT/tde seps';
```

Related Topics

When to Use the EXTERNAL STORE Clause After Configuration
 After you configure the external store for a keystore password, you can use the EXTERNAL_STORE clause in the ADMINISTER KEY MANAGEMENT statement.

7.1.4.3 When to Use the EXTERNAL STORE Clause After Configuration

After you configure the external store for a keystore password, you can use the EXTERNAL STORE clause in the ADMINISTER KEY MANAGEMENT statement.

You must use the EXTERNAL STORE clause in the ADMINISTER KEY MANAGEMENT statement for the following operations: opening, closing, backing up the keystore; adding, updating, or deleting a secret keystore; creating, using, rekeying, tagging, importing, exporting encryption keys.

For example:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY EXTERNAL STORE;

You can change or delete external keystore passwords by using the ADMINISTER KEY MANAGEMENT UPDATE CLIENT SECRET statement or the ADMINISTER KEY MANAGEMENT DELETE CLIENT SECRET statement.

7.1.5 Backing Up Password-Protected TDE Wallets

When you back up a password-protected TDE wallet, you can create a backup identifier string to describe the backup type.

- About Backing Up Password-Protected TDE Wallets
 You must back up password-protected TDE wallets, as per the security policy and
 requirements of your site.
- Creating a Backup Identifier String for the Backup TDE Wallet
 The backup file name of a software password wallet is derived from the name of the password-protected TDE wallet.
- Backing Up a Password-Protected TDE Wallet
 The BACKUP KEYSTORE clause of the ADMINISTER KEY MANAGEMENT statement backs up a password-protected TDE wallet.

7.1.5.1 About Backing Up Password-Protected TDE Wallets

You must back up password-protected TDE wallets, as per the security policy and requirements of your site.

A backup of the TDE wallet contains all of the keys contained in the original TDE wallet. Oracle Database prefixes the backup TDE wallet with the creation time stamp (UTC). If you provide an identifier string, then this string is inserted between the time stamp and TDE wallet name.

After you complete the backup operation, the keys in the original TDE wallet are marked as "backed up". You can check the status of keys querying the V\$ENCRYPTION_WALLET data dictionary view.

You cannot back up auto-login or local auto-login TDE wallets. No new keys can be added to them directly through the ADMINISTER KEY MANAGEMENT statement operations. The information in these TDE wallets is only read and hence there is no need for a backup.

You must include the WITH BACKUP clause in any ADMINISTER KEY MANAGEMENT statement that changes the wallet (for example, changing the wallet password, or setting the master encryption key).

7.1.5.2 Creating a Backup Identifier String for the Backup TDE Wallet

The backup file name of a software password wallet is derived from the name of the password-protected TDE wallet.

• To create a backup identifier string for a backup TDE wallet, use the ADMINISTER KEY MANAGEMENT SQL statement with the BACKUP KEYSTORE clause, with the following syntax:

 $\verb|ewallet|| creation-time-stamp-in-UTC|| user-defined-string.p12||$

When you create the backup identifier (user_defined_string), use the operating system file naming convention. For example, in UNIX systems, you may want to ensure that this setting does not have spaces.

The following example shows the creation of a backup TDE wallet that uses a user-identified string, and how the resultant TDE wallet appears in the file system. This example includes the FORCE KEYSTORE clause in the event the auto-login TDE wallet is in use or the TDE wallet is closed.

```
ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE USING 'Monthly-backup-2013-04' FORCE KEYSTORE IDENTIFIED BY TDE wallet password;
```

This version is for a scenario in which the password is stored in an external store:

```
ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE USING 'Monthly-backup-2013-04' FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE;
```

Resultant TDE wallet file:

```
ewallet 2013041513244657 Monthly-backup-2013-04.p12
```

7.1.5.3 Backing Up a Password-Protected TDE Wallet

The BACKUP KEYSTORE clause of the ADMINISTER KEY MANAGEMENT statement backs up a password-protected TDE wallet.

Back up the keystore by using the following syntax:

```
ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE
[USING 'backup_identifier']
FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | TDE_wallet_password]
[TO 'keystore location'];
```

In this specification:

- USING backup_identifier is an optional string that you can provide to identify
 the backup. Enclose this identifier in single quotation marks (' '). This
 identifier is appended to the named keystore file (for example, ewallet_timestamp emp key backup.p12).
- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
 operation. You must open the TDE wallet for this operation.
- IDENTIFIED BY can be one of the following settings:
 - * EXTERNAL STORE uses the keystore password stored in the external store to perform the keystore operation.
 - * TDE wallet password is the password for the keystore.
- keystore_location is the path at which the backup keystore is stored. If you
 do not specify the keystore_location, then the backup is created in the same
 directory as the original keystore. Enclose this location in single quotation
 marks (' ').

The following example backs up a TDE wallet into another location.

```
ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE USING 'hr.emp_wallet'
```


FORCE KEYSTORE
IDENTIFIED BY TDE_wallet_password
TO '/etc/ORACLE/KEYSTORE/DB1/';

keystore altered.

In the following version, the password for the TDE wallet is external, so the EXTERNAL STORE clause is used. The TDE wallet is backed up into the same directory as the current TDE wallet.

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE USING 'hr.emp_wallet' FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE;

After you run this statement, an <code>ewallet_identifier.p12</code> file (for example, <code>ewallet_time-stamp</code> hr.emp wallet.p12) appears in the keystore location.

7.1.6 How the V\$ENCRYPTION_WALLET View Interprets Backup Operations

The BACKUP column of the V\$ENCRYPTION_WALLET view indicates a how a copy of the keystore was created.

The column indicates if a copy of the keystore had been created with the WITH BACKUP clause of the ADMINISTER KEY MANAGEMENT Statement or the ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE statement.

When you modify a key or a secret, the modifications that you make do not exist in the previously backed-up copy, because you make a copy and then modify the key itself. Because there is no copy of the modification in the previous keystores, the BACKUP column is set to NO, even if the BACKUP had been set to YES previously. Hence, if the BACKUP column is YES, then after you perform an operation that requires a backup, such as adding a custom attribute tag, the BACKUP column value changes to NO.

7.1.7 Backups of the External Keystore

You cannot use Oracle Database to back up external keystores.

Uploading TDE wallets into Oracle Key Vault is another way of backing up the wallet and having it available immediately if the need arises (for example after accidental deletion of the wallet, or file corruption). If the database is not migrated to online key management with Oracle Key Vault, then it keeps relying on the TDE wallet, even if the wallet has been uploaded into Oracle Key Vault.

You can use the Oracle Key Vault okvutil upload and okvutil download commands to upload and download TDE wallets to and from Oracle Key Vault.

For example, to upload a TDE wallet to Oracle Key Vault:

\$ okvutil upload -l "/etc/oracle/wallets" -t wallet -g "HRWallet"
Enter wallet password (<enter> for auto-login): password
Enter Oracle Key Vault endpoint password: Key Vault endpoint password

This example shows how to download a TDE wallet from Oracle Key Vault:

```
$ okvutil download -l "/etc/oracle/wallets/orcl/" -t WALLET -g HRWallet
Enter new wallet password(<enter> for auto-login):
Oracle_wallet_password
Confirm new wallet password: Oracle_wallet_password
Enter Oracle Key Vault endpoint password: Key Vault endpoint password
```

Related Topics

Oracle Key Vault Administrator's Guide

7.1.8 Merging TDE Wallets

You can merge TDE wallets in a variety of ways.

- About Merging TDE Wallets
 - You can merge any combination of TDE wallets, but the merged keystore must be password-protected. It can have a password that is different from the constituent wallets.
- Merging One TDE Wallet into an Existing TDE Wallet
 You can use the ADMINISTER KEY MANAGEMENT statement with the MERGE KEYSTORE clause to merge one TDE wallet into another existing TDE wallet.
- Merging Two TDE Wallets into a Third New TDE Wallet
 You can merge two TDE wallets into a third new TDE wallet. The two existing
 source TDE wallets are not changed.
- Merging an Auto-Login TDE Wallet into an Existing Password-Protected TDE Wallet
 - You can merge an auto-login TDE wallet into an existing password-protected TDE wallet.
- Reversing a TDE Wallet Merge Operation
 You cannot directly reverse a TDE wallet merge operation.

7.1.8.1 About Merging TDE Wallets

You can merge any combination of TDE wallets, but the merged keystore must be password-protected. It can have a password that is different from the constituent wallets.

To use the merged TDE wallet, you must explicitly open the merged TDE wallet after you create it, even if one of the constituent TDE wallets was already open before the merge.

Whether a common key from two source TDE wallets is added or overwritten to a merged TDE wallet depends on how you write the ADMINISTER KEY MANAGEMENT merge statement. For example, if you merge TDE wallet 1 and TDE wallet 2 to create TDE wallet 3, then the key in TDE wallet 1 is added to TDE wallet 3. If you merge TDE wallet 1 into TDE wallet 2, then the common key in TDE wallet 2 is not overwritten.

The ADMINISTER KEY MANAGEMENT merge statement has no bearing on the configured TDE wallet that is in use. However, the merged TDE wallet can be used as the new configured database TDE wallet if you want. Remember that you must reopen the TDE

wallet if you are using the newly created TDE wallet as the TDE wallet for the database at the location configured by the WALLET ROOT parameter.

Related Topics

Migrating from a TDE Wallet to Oracle Key Vault
 You can migrate between password-protected TDE wallets and external keystores in
 Oracle Key Vault.

7.1.8.2 Merging One TDE Wallet into an Existing TDE Wallet

You can use the ADMINISTER KEY MANAGEMENT statement with the MERGE KEYSTORE clause to merge one TDE wallet into another existing TDE wallet.

To perform this type of merge, use the following SQL statement:

```
ADMINISTER KEY MANAGEMENT MERGE KEYSTORE 'TDE_wallet1_location'
[IDENTIFIED BY TDE_wallet1_password]
INTO EXISTING KEYSTORE 'TDE_wallet2_location'
IDENTIFIED BY TDE_wallet2_password
[WITH BACKUP [USING 'backup identifier]];
```

In this specification:

- TDE_wallet1_location is the directory location of the first TDE wallet, which will be left unchanged after the merge. Enclose this path in single quotation marks ('').
- The IDENTIFIED BY clause is required for the first TDE wallet if it is a password-protected TDE wallet. TDE_wallet1_password is the password for the first TDE wallet.
- TDE_wallet2_location is the directory location of the second TDE wallet into which
 the first TDE wallet is to be merged. Enclose this path in single quotation marks (' ').
- TDE_wallet2_password is the password for the second keystore.
- WITH BACKUP creates a backup of the TDE wallet. Optionally, you can use the USING clause to add a brief description of the backup. Enclose this description in single quotation marks (' '). This identifier is appended to the named TDE wallet file (for example, ewallet_time_stamp_emp_key_backup.p12, with emp_key_backup being the backup identifier). Follow the file naming conventions that your operating system uses.

The resultant TDE wallet after the merge operation is always a password-protected TDE wallet.

7.1.8.3 Merging Two TDE Wallets into a Third New TDE Wallet

You can merge two TDE wallets into a third new TDE wallet. The two existing source TDE wallets are not changed.

Merge the TDE wallets by using the following syntax:

```
ADMINISTER KEY MANAGEMENT MERGE KEYSTORE 'TDE_wallet1_location'
[IDENTIFIED BY TDE_wallet1_password]
AND KEYSTORE 'TDE_wallet2_location'
[IDENTIFIED BY TDE_wallet2_password]
INTO NEW KEYSTORE 'TDE_wallet3_location'
IDENTIFIED BY TDE_wallet3_password;
```

In this specification:

- TDE_wallet1_location is the directory location of the first TDE wallet, which will be left unchanged after the merge. Enclose this path in single quotation marks (' ').
- The IDENTIFIED BY clause is required for the first TDE wallet if it is a
 password-protected TDE wallet. TDE_wallet1_password is the current
 password for the first TDE wallet.
- TDE_wallet2_location is the directory location of the second TDE wallet.
 Enclose this path in single quotation marks (' ').
- The IDENTIFIED BY clause is required for the second TDE wallet if it is a
 password-protected TDE wallet. TDE_wallet2_password is the current
 password for the second TDE wallet.
- TDE_wallet3_location specifies the directory location of the new, merged TDE wallet. Enclose this path in single quotation marks (' '). If there is already an existing TDE wallet at this location, the command exits with an error.
- TDE wallet3 password is the new password for the merged TDE wallet.

The following example merges an auto-login TDE wallet with a password-protected TDE wallet to create a merged password-protected TDE wallet at a new location:

```
ADMINISTER KEY MANAGEMENT MERGE KEYSTORE '/etc/ORACLE/KEYSTORE/DB1'
AND KEYSTORE '/etc/ORACLE/KEYSTORE/DB2'
IDENTIFIED BY existing_password_for_keystore_2
INTO NEW KEYSTORE '/etc/ORACLE/KEYSTORE/DB3'
IDENTIFIED BY new_password_for_keystore_3;
```

7.1.8.4 Merging an Auto-Login TDE Wallet into an Existing Password-Protected TDE Wallet

You can merge an auto-login TDE wallet into an existing password-protected TDE wallet.

• Use the ADMINISTER KEY MANAGEMENT MERGE KEYSTORE SQL statement to merge an auto-login TDE wallet into an existing password-protected TDE wallet.

The following example shows how to merge an auto-login TDE wallet into a password-protected TDE wallet. It also creates a backup of the second TDE wallet before creating the merged TDE wallet.

```
ADMINISTER KEY MANAGEMENT MERGE KEYSTORE '/etc/ORACLE/KEYSTORE/DB1'
INTO EXISTING KEYSTORE '/etc/ORACLE/KEYSTORE/DB2'
IDENTIFIED BY keystore password WITH BACKUP;
```

In this specification:

keystore altered.

- MERGE KEYSTORE must specify the auto-login TDE wallet.
- EXISTING KEYSTORE refers to the password TDE wallet.

7.1.8.5 Reversing a TDE Wallet Merge Operation

You cannot directly reverse a TDE wallet merge operation.

When you merge a TDE wallet into an existing TDE wallet (rather than creating a new one), you must include the WITH BACKUP clause in the ADMINISTER KEY MANAGEMENT Statement to create a backup of this existing TDE wallet. Later on, if you decide that you must reverse the merge, you can replace the merged TDE wallet with the one that you backed up. In other words, suppose you want merge TDE wallet A into TDE wallet B. By using the WITH BACKUP clause, you create a backup for TDE wallet B before the merge operation begins. (The original TDE wallet A is still intact.) To reverse the merge operation, revert to the backup that you made of TDE wallet B.

- Use the administer key management merge keystore SQL statement to perform merge operations.
 - For example, to perform a merge operation into an existing TDE wallet:

```
ADMINISTER KEY MANAGEMENT MERGE KEYSTORE '/etc/ORACLE/KEYSTORE/DB1'
INTO EXISTING KEYSTORE '/etc/ORACLE/KEYSTORE/DB2'
IDENTIFIED BY password WITH BACKUP USING "merge1";
```

Replace the new TDE wallet with the backup TDE wallet, which in this case would be named ewallet time-stamp mergel.pl2.

 To merge an auto-login TDE wallet into a password-based TDE wallet, use the ADMINISTER KEY MANAGEMENT MERGE KEYSTORE SQL statement.

7.1.9 Moving a TDE Wallet to a New Location

You move a TDE wallet to a new location after you have updated the WALLET ROOT parameter.

If you are using Oracle Key Vault, then you can configure a TDE direct connection where Key Vault directly manages the master encryption keys. In this case, you will never need to manually move the TDE wallet to a new location.

- Connect to the united mode CDB root or isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- Back up the TDE wallet.

For example:

```
ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE
USING 'hr.emp_keystore'
FORCE KEYSTORE
IDENTIFIED BY
TDE wallet password TO '/etc/ORACLE/KEYSTORE/DB1/';
```

3. Close the TDE wallet.

Examples of ways that you can close the TDE wallet are as follows.

For an auto-login TDE wallet:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE;

For a password-protected TDE wallet:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY TDE wallet password;

For a TDE wallet for which the password is stored externally:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY EXTERNAL STORE;
```

Exit the database session.

For example, if you are logged in to SQL*Plus:

EXIT

- 5. In the init.ora file for the database instance, update the WALLET_ROOT parameter to point to the new location where you want to move the TDE wallet.
- 6. Use the operating system move command (such as mv) to move the TDE wallet with all of its keys to the new directory location.

Related Topics

Oracle Key Vault Administrator's Guide

7.1.10 Moving a TDE Wallet Out of Automatic Storage Management

You can use the ADMINISTER KEY MANAGEMENT statement to move a TDE wallet out Automatic Storage Management.

- 1. Connect to the united mode CDB root or isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Initialize a target TDE wallet on the file system by using the following syntax:

```
ADMINISTER KEY MANAGEMENT CREATE KEYSTORE target_TDE_wallet_path IDENTIFIED BY target TDE wallet password;
```

In this specification:

- target_TDE_wallet_path is the directory path to the target TDE wallet on the file system.
- target_TDE_wallet_password is a password that you create for the TDE wallet.

For example:

```
ADMINISTER KEY MANAGEMENT CREATE KEYSTORE '/etc/ORACLE/KEYSTORE/DB1/'IDENTIFIED BY "target TDE wallet password";
```

3. Copy the TDE wallet from ASM to the target TDE wallet that you just created.

This step requires that you merge the TDE wallet from ASM to the file system, as follows:

```
ADMINISTER KEY MANAGEMENT MERGE KEYSTORE source_TDE_wallet_path
IDENTIFIED BY source_TDE_wallet_password
INTO EXISTING KEYSTORE target_TDE_wallet_path
IDENTIFIED BY target_TDE_wallet_password
WITH BACKUP USING backupIdentifier;
```

In this specification:

- source TDE wallet path is the directory path to the source TDE wallet.
- source TDE wallet password is th source TDE wallet password.
- target TDE wallet path is the path to the target TDE wallet.

- target TDE wallet password is the target TDE wallet password.
- backupIdentifier is the backup identifier to be added to the backup file name.

For example:

```
ADMINISTER KEY MANAGEMENT MERGE KEYSTORE '+DATAFILE' IDENTIFIED BY "source_TDE_wallet_password" INTO EXISTING KEYSTORE '/etc/ORACLE/KEYSTORE/DB1/' IDENTIFIED BY "target_TDE_wallet_password" WITH BACKUP USING "bkup";
```

7.1.11 Migrating from a TDE Wallet to Oracle Key Vault

You can migrate between password-protected TDE wallets and external keystores in Oracle Key Vault.

- Migrating from a Password-Protected TDE Wallet to an External Keystore
 You can migrate from a password-protected TDE wallet to an external keystore.
- Migrating from an External Keystore to a Password-Based TDE Wallet You can migrate an external keystore to a TDE wallet.
- Keystore Order After a Migration
 After you perform a migration, keystores can be either primary or secondary in their order.

7.1.11.1 Migrating from a Password-Protected TDE Wallet to an External Keystore

You can migrate from a password-protected TDE wallet to an external keystore.

- Step 1: Convert the TDE Wallet to Open with the External Keystore Some Oracle tools require access to the old TDE wallet to encrypt or decrypt data that was exported or backed up using the TDE wallet.
- Step 2: Configure the External Keystore Type
 You can use the ALTER SYSTEM statement to configure the external keystore type.
- Step 3: Perform the External Keystore Migration
 You can use the ADMINISTER KEY MANAGEMENT SQL statement to perform an external keystore migration.

7.1.11.1.1 Step 1: Convert the TDE Wallet to Open with the External Keystore

Some Oracle tools require access to the old TDE wallet to encrypt or decrypt data that was exported or backed up using the TDE wallet.

Examples of these tools are Oracle Data Pump and Oracle Recovery Manager.

- Use the ADMINISTER KEY MANAGEMENT SQL statement to convert a TDE wallet to open with an external keystore.
 - To set the TDE wallet password as that of the external keystore, use the following syntax:

```
ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD FORCE KEYSTORE

IDENTIFIED BY TDE_wallet_password

SET "external_key_manager_password" WITH BACKUP

[USING 'backup_identifier'];
```


In this specification:

- * TDE_wallet_password is the same password that you used when creating the TDE wallet.
- * external_key_manager_password is the new TDE wallet password which is the same as the password of the external keystore.
- * WITH BACKUP creates a backup of the TDE wallet. Optionally, you can use the USING clause to add a brief description of the backup. Enclose this description in single quotation marks (' '). This identifier is appended to the named TDE wallet file (for example, ewallet_time-stamp_emp_key_backup.p12, with emp_key_backup being the backup identifier). Follow the file naming conventions that your operating system uses.
- To create an auto-login TDE wallet for a TDE wallet, use the following syntax:

```
ADMINISTER KEY MANAGEMENT CREATE [LOCAL] AUTO_LOGIN KEYSTORE FROM KEYSTORE 'keystore_location' IDENTIFIED BY TDE wallet password;
```

In this specification:

- * LOCAL enables you to create a local auto-login TDE wallet. Otherwise, omit this clause if you want the TDE wallet to be accessible by other computers.
- * TDE_wallet_location is the path to the TDE wallet directory location of the wallet that is configured in the sqlnet.ora file.
- * TDE_wallet_password is the existing password of the configured TDE wallet.

7.1.11.1.2 Step 2: Configure the External Keystore Type

You can use the ALTER SYSTEM statement to configure the external keystore type.

For the TDE wallet to open with the external keystore, either the TDE wallet must have the same password as the external keystore, or alternatively, you can create an autologin TDE wallet for the TDE wallet.

- 1. Connect to the united mode CDB root or isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Set the TDE CONFIGURATION dynamic initialization parameter.

This example migrates the database from a TDE wallet to Oracle Key Vault.

```
ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=OKV|FILE" SCOPE = "BOTH" SID = "*";
```

7.1.11.1.3 Step 3: Perform the External Keystore Migration

You can use the ADMINISTER KEY MANAGEMENT SQL statement to perform an external keystore migration.

To migrate from the TDE wallet to external keystore, you must use the MIGRATE USING <code>external_key_manager_password</code> clause in the <code>ADMINISTER KEY MANAGEMENT SET KEY SQL</code> statement to decrypt the existing TDE table keys and tablespace encryption keys with the TDE master encryption key in the TDE wallet and then reencrypt them with

the newly created TDE master encryption key in the external keystore. After you complete the migration, you do not need to restart the database, nor do you need to manually re-open the external keystore. The migration process automatically reloads the keystore keys in memory.

Migrate the external keystores by using the following syntax:

```
ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY IDENTIFIED BY "external_key_manager_password" MIGRATE USING TDE_wallet_password [WITH BACKUP [USING 'backup identifier']];
```

In this specification:

- external_key_manager_password is the password that was created when the
 external keystore was created. Enclose this setting in double quotation marks (" ").
- TDE_wallet_password is the same password that you used when you created the
 TDE wallet or that you have changed to (when converting a TDE wallet to open with
 an external keystore).
- USING enables you to add a brief description of the backup. Enclose this description in single quotation marks (' '). This identifier is appended to the named keystore file (for example, ewallet_time-stamp_emp_key_backup.p12, with emp_key_backup being the backup identifier). Follow the file naming conventions that your operating system uses.

7.1.11.2 Migrating from an External Keystore to a Password-Based TDE Wallet

You can migrate an external keystore to a TDE wallet.

- About Migrating Back from an External Keystore
 To switch from using an external keystore solution to a TDE wallet, you can use reverse migration of the TDE wallet.
- Step 1: Configure the External Keystore Type
 You can use the ALTER SYSTEM statement to configure the external keystore type.
- Step 2: Configure the Keystore for the Reverse Migration
 The ADMINISTER KEY MANAGEMENT statement with the SET ENCRYPTION KEY and REVERSE MIGRATE clauses can be used to reverse the migration of a keystore.
- Step 3: Configure the External Keystore to Open with the TDE Wallet
 After you complete the migration, the migration process automatically reloads the
 keystore keys in memory.

7.1.11.2.1 About Migrating Back from an External Keystore

To switch from using an external keystore solution to a TDE wallet, you can use reverse migration of the TDE wallet.

After you complete the switch, keep the external keystore, in case earlier backup files rely on the TDE master encryption keys in the external key manager.

If you had originally migrated from the TDE wallet to the external keystore and reconfigured the TDE wallet, then you already have an existing TDE wallet with the same password as the external keystore password. Reverse migration configures this keystore to act as the new TDE wallet with a new password. If your existing TDE wallet is an auto-login TDE wallet and you have the password-based TDE wallet for this auto-login TDE wallet, then use the password-based TDE wallet. If the password-based TDE wallet is not available, then merge

the auto-login TDE wallet into a newly created empty password-based TDE wallet, and use the newly created password-based TDE wallet.

If you do not have an existing TDE wallet, then you must specify a TDE wallet location using the WALLET_ROOT parameter in the init.ora file. When you perform the reverse migration, migrate to the previous TDE wallet so that you do not lose the keys.

Related Topics

- Merging TDE Wallets
 You can merge TDE wallets in a variety of ways.
- Migration of an Encrypted Database from a TDE Wallet to Oracle Key Vault or OCI KMS

To switch from a TDE wallet to centralized key management with Oracle Key Vault or Oracle Cloud Infrastructure (OCI) Key Management Service (KMS), after you upload all current and retired TDE master keys you must migrate the database from the TDE wallet to Oracle Key Vault or OCI KMS.

7.1.11.2.2 Step 1: Configure the External Keystore Type

You can use the ALTER SYSTEM statement to configure the external keystore type.

- 1. Connect to the united mode CDB root or isolated mode PDB as a user who has been granted the ALTER SYSTEM privilege.
- 2. Set the TDE_CONFIGURATION dynamic initialization parameter to specify the keystore type.

For example:

```
ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=OKV|FILE" SCOPE = "BOTH" SID = "*";
```

Setting KEYSTORE_CONFIGURATION to "OKV" indicates a configuration where the connection into Oracle Key Vault must be opened by providing the Oracle Key Vault password. To use an auto-open Oracle Key Vault configuration, you set KEYSTORE_CONFIGURATION to "OKV|FILE", where the Oracle Key Vault password is stored in an auto-open keystore in WALLET ROOT/tde.

7.1.11.2.3 Step 2: Configure the Keystore for the Reverse Migration

The ADMINISTER KEY MANAGEMENT statement with the SET ENCRYPTION KEY and REVERSE MIGRATE clauses can be used to reverse the migration of a keystore.

- 1. Connect to the united mode CDB root or isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Reverse migrate the keystore by using the following syntax:

```
ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY
IDENTIFIED BY TDE_wallet_password
REVERSE MIGRATE USING "external_key_manager_password"
[WITH BACKUP [USING 'backup_identifier']];
```

In this specification:

TDE_wallet_password is the password for the existing keystore or the new keystore.

- external_key_manager_password is the password that was created when you first created the external keystore. If the pre-external TDE wallet is the new keystore, then you must ensure that it has the same password as the external_key_manager_password before issuing the reverse migration command. Enclose this setting in double quotation marks (" ").
- WITH BACKUP creates a backup of the TDE wallet. Optionally, you can include the USING clause to add a brief description of the backup. Enclose this description in single quotation marks (' '). This identifier is appended to the named keystore file (for example, ewallet_time-stamp_emp_key_backup.p12, with emp_key_backup being the backup identifier). Follow the file naming conventions that your operating system uses.

For example:

```
ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY
IDENTIFIED BY TDE_wallet_password
REVERSE MIGRATE USING "external_key_manager_password" WITH BACKUP;
keystore altered.
```

3. Optionally, change the keystore password.

For example:

```
ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD IDENTIFIED BY old_TDE_wallet_password SET new_TDE_wallet_password WITH BACKUP USING 'before password was changed';
```

7.1.11.2.4 Step 3: Configure the External Keystore to Open with the TDE Wallet

After you complete the migration, the migration process automatically reloads the keystore keys in memory.

You do not need to restart the database, nor do you need to manually re-open the TDE wallet.

The external keystore may still be required after reverse migration because the old keys are likely to have been used for Oracle Data Pump Export and Oracle Recovery Manager (Oracle RMAN)-encrypted backups. You should add the external keystore credentials to the keystore so that the HSM can be opened with the TDE wallet.

Related Topics

Configuring Auto-Open Connections into External Key Managers
 An external key manager can be configured to use the auto-login capability.

7.1.11.3 Keystore Order After a Migration

After you perform a migration, keystores can be either primary or secondary in their order.

The WALLET_ORDER column of the V\$ENCRYPTION_WALLET dynamic view describes whether a TDE wallet is primary (that is, it holds the current TDE master encryption key) or if it is secondary (it holds the previous TDE master encryption key). The WRL_TYPE column describes the type of locator for the TDE wallet (for example, FILE for the sqlnet.ora file). The WALLET_ORDER column shows SINGLE if two TDE wallets are not configured together and no migration was ever performed previously.

Table 7-1 describes how the keystore order works after you perform a migration.

Table 7-1 Keystore Order After a Migration

Type of Migration Done	WRL_TYPE	WALLET_ORDER	Description
Migration of TDE wallet to external keystore	OKV	PRIMARY	Both the external and TDE wallet are configured. The TDE master encryption key can be either in Oracle Key Vault or the TDE wallet.
	FILE	SECONDARY	
			The TDE master encryption key is first searched in Oracle Key Vault.
			If the TDE master encryption key is not in the primary keystore (Oracle Key Vault), then it will be searched for in the TDE wallet.
			All of the new TDE master encryption keys will be created in the primary keystore (in this case, Oracle Key Vault).
Reverse migration from Oracle Key Vault (HSM) to TDE wallet	FILE	PRIMARY	Both the external and TDE wallet are configured. The TDE master encryption key can be either in the external keystore or the TDE wallet.
	HSM	SECONDARY	
			The TDE master encryption key is first searched for in the TDE wallet.
			If the TDE master encryption key is not present in the primary (that is, software) TDE wallet, then it will be searched for in the HSM's external keystore.
			All of the new TDE master encryption keys will be created in the primary keystore (in this case, the TDE wallet).

7.1.12 Migration of Keystores to and from Oracle Key Vault

You can use Oracle Key Vault to migrate both TDE wallets and external keystores to and from Oracle Key Vault.

This enables you to manage the keystores centrally, and then share the keystores as necessary with other TDE-enabled databases in your enterprise.

Oracle Key Vault enables you to upload a keystore to a container called a virtual wallet, and then create a new virtual wallet from the contents of previously uploaded keystore. For example, suppose you previously uploaded a keystore that contains 5 keys. You can create a new virtual wallet that consists of only 3 of these keys. You then can download this keystore to another TDE-enabled database. This process does not modify the original keystore.

In addition to Oracle keystores, Oracle Key Vault enables you to securely share other security objects, such as credential files and Java keystores, across the enterprise. It prevents the loss of keys and keystores due to forgotten passwords or accidentally deleted keystores. You can use Oracle Key Vault with products other than TDE: Oracle Real Application Security, Oracle Active Data Guard, and Oracle GoldenGate. Oracle Key Vault facilitates the movement of encrypted data using Oracle Data Pump and Oracle Transportable Tablespaces.

Related Topics

Oracle Key Vault Administrator's Guide

7.1.13 Configuring Keystores for Automatic Storage Management

You can store a TDE wallet on an Automatic Storage Management (ASM) disk group.

- About Configuring Keystores for Automatic Storage Management
 You can configure a TDE wallet for Automatic Storage Management (ASM) for a
 standalone database or a multitenant environment. The WALLET_ROOT location can be
 compliant or non-compliant with Oracle Managed File (OMF) systems.
- Configuring a Keystore to Point to an ASM Location
 You can set WALLET_ROOT to point to an ASM directory within which the TDE wallet of the
 CDB root (which all united mode PDBs share) and the TDE wallets of all isolated mode
 PDBs are located.
- Configuring a Keystore to Point to an ASM Location When the WALLET_ROOT Location Does Not Follow OMF Guidelines
 If the chosen WALLET_ROOT location does not comply with the Oracle Managed File (OMF) guidelines, then the Oracle database cannot perform automation of the directory creation.

7.1.13.1 About Configuring Keystores for Automatic Storage Management

You can configure a TDE wallet for Automatic Storage Management (ASM) for a standalone database or a multitenant environment. The WALLET_ROOT location can be compliant or non-compliant with Oracle Managed File (OMF) systems.

You should use the Wallet_ROOT and TDE_CONFIGURATION initialization parameters to configure the TDE wallet location in an ASM system. The TDE_CONFIGURATION parameter must be set with the attribute <code>KEYSTORE_CONFIGURATION=FILE</code> in order for the <code>WALLET_ROOT</code> parameter to work. Note that starting with Oracle Database release 19c, the <code>ENCRYPTION_WALLET_LOCATION</code>, set in the <code>sqlnet.ora</code> file, is deprecated in favor of <code>WALLET_ROOT</code> and <code>TDE_CONFIGURATION</code>.

To perform the configuration, you must specify a + sign, followed by the ASM disk group and path where the TDE wallet will be located. For example:

 ${\tt WALLET_ROOT=+} disk_group/path$

Note the following:

- When you open a local TDE wallet, it opens only on the ASM node on which it was created.
- When you designate the path for the WALLET_ROOT for databases in standalone or
 multitenant environments, or environments where the WALLET_ROOT location either
 complies or does not comply with the Oracle Managed File (OMF) directory naming
 convention, be aware that this path must follow certain conventions so that the database
 can automate the creation of the directory components of the TDE wallet locations for
 you. Otherwise, you must manually create the directories under the WALLET_ROOT
 location.
- If you must move or merge TDE wallets between a regular file system and an ASM file system, then you can use the same TDE wallet merge statements that are used to merge TDE wallets.
- To run commands to manage TDE wallets in an ASM environment, you can use the ASMCMD utility.

Related Topics

- Merging TDE Wallets
 You can merge TDE wallets in a variety of ways.
- Oracle Automatic Storage Management Administrator's Guide

7.1.13.2 Configuring a Keystore to Point to an ASM Location

You can set WALLET_ROOT to point to an ASM directory within which the TDE wallet of the CDB root (which all united mode PDBs share) and the TDE wallets of all isolated mode PDBs are located.

1. Ensure that the KEYSTORE_CONFIGURATION attribute of the TDE_CONFIGURATION dynamic initialization parameter is set to FILE.

For a CDB, set TDE_CONFIGURATION in the CDB root; for an isolated PDB, set it in the PDB.

For example, in SQL*Plus:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE";

2. Set the WALLET_ROOT static initialization parameter to the ASM disk group location followed by the DB UNIQUE NAME initialization parameter value.

The inclusion of the value of <code>DB_UNIQUE_NAME</code> is necessary to allow the database server to automate the creation of the necessary directories under this location.

You must not use <code>OMF</code> as a directory component of the <code>WALLET_ROOT</code> location (unlike in the standalone database configuration section).

For example:

```
WALLET ROOT=+disk group name/db unique name
```

This setting locates the TDE wallet that is used by the root and by all of the united mode PDBs in the $WALLET_ROOT/db_unique_name/tde$ directory (that is, in $+disk_group_name/db_unique_name/tde$).

This setting locates the TDE wallet which is used by each isolated mode PDB in the WALLET_ROOT/db_unique_name/pdb_guid/tde directory (that is, in +disk_group_name/db_unique_name/pdb_guid/tde).

7.1.13.3 Configuring a Keystore to Point to an ASM Location When the WALLET_ROOT Location Does Not Follow OMF Guidelines

If the chosen $\mathtt{WALLET_ROOT}$ location does not comply with the Oracle Managed File (OMF) guidelines, then the Oracle database cannot perform automation of the directory creation.

In this case, you must use the ALTER DISKGROUP command to manually create the necessary directories under the WALLET_ROOT location. You must use the ALTER DISKGROUP ... ADD DIRECTORY statement to manually create the necessary directories, because no automation of the directory creation is possible when the WALLET_ROOT parameter is not using an OMF-compliant value.

1. Connect to the united mode CDB root or isolated mode PDB using the SYSASM administrative privilege.

2. Ensure that the KEYSTORE_CONFIGURATION attribute of the TDE_CONFIGURATION dynamic initialization parameter is set to FILE.

For example:

```
ALTER SYSTEM SET TDE CONFIGURATION="KEYSTORE CONFIGURATION=FILE";
```

3. In the init.ora file, set the WALLET_ROOT static initialization parameter to the ASM disk group location.

For example, the following path after <code>disk_group_name</code> contains no uppercase OMF directory elements:

```
WALLET ROOT="+disk group name/mydir/wallets"
```

4. As a user with the SYSDBA administrative privilege, run the ALTER DISKGROUP statements to create the necessary directories.

You must perform this step because the database server cannot automate the creation of these directories, since the location chosen for WALLET_ROOT is not compliant with the Oracle Managed Files guideline (that is, it does not have the OMF component included in it in uppercase letters).

a. Find the PDB GUID of the PDB that will store the keystore, as follows:

```
SELECT GUID FROM DBA PDBS WHERE PDB NAME = 'pdb name';
```

b. Include the PDB GUID in the following ALTER DISKGROUP statements to create the necessary directories for the isolated mode PDB within the WALLET_ROOT location. For example, assuming the GUID is 4756C705E52A8768E053F82DC40A5329:

```
ALTER DISKGROUP "disk_group_name" ADD DIRECTORY

'+disk_group_name/mydir/wallets/4756C705E52A8768E053F82DC40A5329'

ALTER DISKGROUP "disk_group_name" ADD DIRECTORY

'+disk_group_name/mydir/wallets/4756C705E52A8768E053F82DC40A5329/tde';
```

7.1.14 Managing Updates to the PKCS#11 Library

Periodically, you may need to update the endpoint shared PKCS#11 library.

- About Managing Updates to the PKCS#11 Library
 The Oracle Database uses Oracle Key Vault's PKCS#11 endpoint shared library to retrieve the TDE master encryption key from Oracle Key Vault.
- Switching Over to an Updated PKCS#11 Library
 When an updated PKCS#11 endpoint shared library is available, you can switch over to the updated library without incurring any database downtime.

7.1.14.1 About Managing Updates to the PKCS#11 Library

The Oracle Database uses Oracle Key Vault's PKCS#11 endpoint shared library to retrieve the TDE master encryption key from Oracle Key Vault.

To switch an Oracle database over to an updated PKCS#11 shared library, you must run the following statement:

```
ADMINISTER KEY MANAGEMENT SWITCHOVER TO LIBRARY 'updated_fully_qualified_file_name_of_library' FOR ALL CONTAINERS;
```

Note the following:

- The path of the updated fully qualified file name must begin with <code>/opt/oracle/extapi/64/pkcs11/</code>. The path provided in the fully qualified file name will be validated to ensure that each directory is owned by <code>root</code> and is not writable by <code>group</code> or other (the permissions of each directory should look like <code>drwxr-xr-xroot root</code>), and that none of the components of the path are symbolic links. If you receive an <code>ORA-02097</code>: <code>parameter cannot be modified because specified value is invalid or <code>ORA-46702</code>: failed to switch over the <code>PKCS#11 library error</code>, then check the trace file for details regarding the path validation failure.</code>
- Run this command from the root container database (CDB\$ROOT). The PKCS#11
 library is switched for the root container database and all PDBs that currently use
 the PKCS#11 library.
- Be aware that after you switch over to an updated PKCS#11 library, there may be
 a temporary decrease in TDE performance while the internal state of the PKCS#11
 library is re-established, due to the internal state being lost during the library
 switchover.

7.1.14.2 Switching Over to an Updated PKCS#11 Library

When an updated PKCS#11 endpoint shared library is available, you can switch over to the updated library without incurring any database downtime.

- 1. Log in to the CDB root as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Perform the following steps.

The following steps assume that the current Oracle Key Vault version is 21.5 and that you are upgrading to version 21.6. These versions are for illustrative purposes only.

a. Create appropriate directories under /opt/oracle/extapi/64/. For example, for the Oracle Key Vault client software versions 21.5 and 21.6:

```
$ sudo sh -c 'mkdir -pvm755 /opt/oracle/extapi/64/pkcs11/okv/lib/
{21.5,21.6}'
```

b. Run the Oracle Key Vault 21.5 client root script to copy the Oracle Key Vault PKCS#11 library into the legacy directory:

```
$ sudo sh -c '/etc/ORACLE/KEYSTORES/finance/okv/bin/root.sh'
```

c. Move the Oracle Key Vault PKCS#11 library into the correct version-depending directory:

```
$ sudo sh -c 'mv -v
/opt/oracle/extapi/64/hsm/oracle/1.0.0/liborapkcs.so
/opt/oracle/extapi/64/pkcs11/okv/lib/21.5/'
```

d. Confirm that the copy operation succeeed.

```
$ tree -np /opt/oracle/extapi/64
```


e. As a user with the ALTER SYSTEM privilege, set the static initialization parameter PKCS11 LIBRARY LOCATION.

```
ALTER SYSTEM SET PKCS11_LIBRARY_LOCATION = '/opt/oracle/extapi/64/pkcs11/okv/lib/21.5/liborapkcs.so' SCOPE = SPFILE SID = '*';
```

After a database restart, your database is now ready to switch to new PKCS#11 libraries without DB downtime.

3. After you upgrade Oracle Key Vault to the new release (for example, 21.6), copy the new PKCS#11 library from the legacy directory into the following location:

```
$ sudo sh -c 'mv -v /opt/oracle/extapi/64/hsm/oracle/1.0.0/
liborapkcs.so /opt/oracle/extapi/64/pkcs11/okv/lib/21.6/'
```

4. Switch over to the updated PKCS#11 library.

```
ADMINISTER KEY MANAGEMENT SWITCHOVER TO LIBRARY 'updated fully qualified file name of library' FOR ALL CONTAINERS;
```

For example:

```
ADMINISTER KEY MANAGEMENT SWITCHOVER TO LIBRARY '/opt/oracle/extapi/64/pkcs11/okv/lib/21.6/liborapkcs.so' FOR ALL CONTAINERS;
```

In this example, the library path uses the convention <code>/opt/oracle/extapi/64/pkcs11/vendor/lib/version/</code>. Oracle recommends that you have at minimum <code>version</code> in the library path because it will help in provisioning more libraries under <code>/opt/oracle/extapi/64/pkcs11</code>, which is needed for the library switchover operation.

If the database uses SPFILE to manage its parameters, then the library is switched. If the database uses PFILE, then the configuration is not changed, although the system does switch over to the updated PKCS#11 library. Otherwise any restart of the database instance would cause it to revert to using the earlier PKCS#11 library.

7.1.15 Backup and Recovery of Encrypted Data

For TDE wallets, you cannot access encrypted data without the TDE master encryption key.

Because the TDE master encryption key is stored in the TDE wallet, you should periodically back up the TDE wallet in a secure location. You must back up a copy of the TDE wallet whenever you set a new TDE master encryption key or perform any operation that writes to the TDE wallet.

Do not back up the TDE wallet in the same location as the encrypted data. Back up the TDE wallet separately. This is especially true when you use the auto-login TDE wallet, which does not require a password to open. In case the backup tape is lost, a malicious user should not be able to get both the encrypted data and the TDE wallet.

Oracle Recovery Manager (Oracle RMAN) does not back up the TDE wallet as part of the database backup. When using a media manager such as Oracle Secure Backup with Oracle RMAN, Oracle Secure Backup automatically excludes auto-open TDE wallets (the <code>cwallet.sso</code> files). However, it does not automatically exclude encryption TDE wallets (the <code>ewallet.p12</code> files). It is a good practice to add the following <code>exclude</code> data set statement to your Oracle Secure Backup configuration:

```
exclude name *.p12
```


This setting instructs Oracle Secure Backup to exclude the encryption TDE wallet from the backup set.

If you lose the TDE wallet that stores the TDE master encryption key, then you can restore access to encrypted data by copying the backed-up version of the TDE wallet to the appropriate location. If you archived the restored TDE wallet after the last time that you reset the TDE master encryption key, then you do not need to take any additional action.

If the restored TDE wallet does not contain the most recent TDE master encryption key, then you can recover old data up to the point when the TDE master encryption key was reset by rolling back the state of the database to that point in time. All of the modifications to encrypted columns after the TDE master encryption key was reset are lost

Related Topics

Oracle Database Backup and Recovery User's Guide

7.1.16 Dangers of Deleting TDE Wallets

Oracle strongly recommends that you do not delete TDE wallets.

If a TDE wallet becomes overly full, any TDE master encryption key other than the currently active TDE master encryption key can be moved to a new TDE wallet to reduce the overall size of the TDE wallet, but it is important to keep a backup of the old and new TDE wallets because even though the keys have been moved out of the currently active TDE wallet, they may still be needed by other Oracle features, such as Oracle Recovery Manager backup operations. (See Related Topics at the end of this topic for a listing of features that are affected by deleted TDE wallets.)

Deleting a TDE wallet that still contains keys is particularly dangerous if you have configured Transparent Data Encryption and the TDE wallet is in use. You can find if a TDE wallet is in use by querying the STATUS column of the V\$ENCRYPTION_WALLET view after you open the TDE wallet. How you should proceed depends on whether you are using united mode or isolated mode.

- In isolated mode, if the STATUS column of the V\$ENCRYPTION_WALLET is OPEN_NO_MASTER_KEY, then it is safe to archive and later delete the this TDE wallet, because there are no keys in it.
- In united mode, you must run the query of V\$ENCRYPTION_WALLET from the CDB\$ROOT, not the PDB. If you run the query in a PDB that does not yet have a key set, then the STATUS iS OPEN_NO_MASTER_KEY. However, this can be misleading, because a key could have been set in the CDB\$ROOT. After you run the query in the root and if the STATUS iS OPEN_NO_MASTER_KEY, then you can safely archive and later delete the TDE wallet.

The reason that you should be cautious when moving keys out of the currently-active TDE keystore is that this wallet may contain keys that are still needed by the database (even though the TDE master encryption key has been rekeyed). Deleting the TDE wallet deletes these keys, and could result in the loss of encrypted data. Even if you decrypted all of the data in your database, you still should not delete the TDE wallet, because doing so could still hamper the normal functioning of the Oracle database. This is because a TDE master encryption key in the TDE wallet can also be required for other Oracle Database features. (See Related Topics at the end of this topic for a listing of features that are affected by deleted TDE wallets.)

Even after you performed TDE keystore migration (which rekeys in such a way that the location of your currently-active TDE master encryption key changes place between your TDE wallet and your external keystore), you still should not delete your original TDE wallet. The keys in the original TDE wallet may be needed at a later time (for example, when you must recover an offline encrypted tablespace). Even if all online tablespaces are not encrypted, the key may still be in use.

The exception is in the case of software auto-login (or local auto-login) TDE wallets. If you do not want to use this type of TDE wallet, then ideally you should move it to a secure directory. Only delete an auto-login TDE wallet if you are sure that it was created from a specific password-based TDE wallet because an auto-login TDE wallet is always based on an ordinary TDE wallet. The TDE wallet should be available and known.

If you must delete a TDE wallet, then do so with great caution. You must first move the keys within the TDE wallet to a new TDE wallet by using the ADMINISTER KEY MANAGEMENT MOVE KEYS TO NEW KEYSTORE statement.

Related Topics

- Features That Are Affected by Deleted Keystores
 Some features can be adversely affected if a keystore is deleted and a TDE master encryption key residing in that keystore is later needed.
- Moving a TDE Master Encryption Key into a New Keystore in United Mode
 In united mode, you can move an existing TDE master encryption key into a new
 keystore from an existing password-based TDE wallet.
- Moving a TDE Master Encryption Key into a New Keystore in Isolated Mode
 In isolated mode, you can move an existing TDE master encryption key into a new TDE
 wallet from an existing password TDE wallet.

7.1.17 Features That Are Affected by Deleted Keystores

Some features can be adversely affected if a keystore is deleted and a TDE master encryption key residing in that keystore is later needed.

Before you delete a keystore, consider the impact that the deletion will have in the event that you need the any TDE master encryption key in the TDE keystore at a later time. The following features and activities are affected:

- Offlined tablespace operations
- Oracle Secure Backup operations
- Media recovery and block media recovery operations
- Point-in-time recovery operations
- Physical and logical Oracle Data Guard standby operations
- Golden Gate operations
- Oracle Streams operations
- Oracle Recovery Manager operations, including restoring Oracle Recovery Manager backups
- Applying archived redo logs to a database during database crash recovery operations
- Database online block recovery. (Online block recovery implies that the database is still open. Deleting a wallet in an open database with encrypted tablespaces will cause

additional problems other than those associated with online block recovery.) These problems can include the following:

- Encrypted online data in encrypted tablespaces would no longer be decrypted.
 Encrypted metadata in the SYSTEM, UNDO, and TEMP tablespaces would no longer be decrypted. You will no longer have control over what metadata is encrypted or where that metadata can reside.
- Buffered data or metadata needs to be encrypted before it can be written back to the disk, but if the wallet is deleted, then the buffered data or metadata would no longer be encrypted. This could cause redo generation to fail, and the DBWR background process would not be able to write the data, which would possibly lead to a database instance failure.
- After a database instance failure, the database instance recovery and database crash recovery would fail, leading to the database not being able to be restarted.

Related Topics

Dangers of Deleting TDE Wallets
 Oracle strongly recommends that you do not delete TDE wallets.

7.2 Managing the TDE Master Encryption Key

You can manage the TDE master encryption key in several ways.

- TDE Master Encryption Key Attribute Management
 TDE master encryption key attributes store information about the TDE master encryption key.
- Creating Custom TDE Master Encryption Key Attributes for Reports
 Custom TDE master encryption key attributes enable you to defined attributes that
 are specific to your needs.
- Setting or Rekeying the TDE Master Encryption Key in the Keystore
 You can set or rekey the TDE master encryption key for both TDE wallets and
 external keystores.
- Exporting and Importing the TDE Master Encryption Key
 You can export and import the TDE master encryption key in different ways.
- Converting from ENCRYPTION_WALLET_LOCATION to WALLET_ROOT and TDE_CONFIGURATION

You can convert the wallet location from using the sqlnet.ora ENCRYPTION_WALLET_LOCATION parameter to using the WALLET_ROOT and TDE CONFIGURATION parameters instead.

 Management of TDE Master Encryption Keys Using Oracle Key Vault You can use Oracle Key Vault to manage and share TDE master encryption keys across an enterprise.

7.2.1 TDE Master Encryption Key Attribute Management

TDE master encryption key attributes store information about the TDE master encryption key.

- TDE Master Encryption Key Attributes
 TDE master encryption key attributes include detailed information about the TDE master encryption key.
- Finding the TDE Master Encryption Key That Is in Use
 A TDE master encryption key that is in use is the encryption key that was activated most recently for the database.

7.2.1.1 TDE Master Encryption Key Attributes

TDE master encryption key attributes include detailed information about the TDE master encryption key.

The information contains the following types:

Key time stamp information: Internal security policies and compliance policies usually
determine the key rekeying frequency. You should expire keys when they reach the end
of their lifetimes and then generate new keys. Time stamp attributes such as key creation
time and activation time help you to determine the key age accurately, and automate key
generation.

The V\$ENCRYPTION_KEYS view includes columns such as CREATION_TIME and ACTIVATION_TIME. See *Oracle Database Reference* for a complete description of the V\$ENCRYPTION KEYS view.

Key owner information: Key owner attributes help you to determine the user who
created or activated the key. These attributes can be important for security, auditing, and
tracking purposes. Key owner attributes also include key use information, such as
whether the key is used for standalone TDE operations or used in a multitenant
environment.

The V\$ENCRYPTION_KEYS view includes columns such as CREATOR, CREATOR_ID, USER, USER ID, and KEY USE.

 Key source information: Keys often must be moved between databases for operations such as import-export operations and Data Guard-related operations. Key source attributes enable you to track the origin of each key. You can track whether a key was created locally or imported, and the database name and instance number of the database that created the key. In a multitenant environment, you can track the PDB where the key was created.

The v\$ENCRYPTION_KEYS view includes columns such as CREATOR_DBNAME, CREATOR_DBID, CREATOR_INSTANCE_NAME, CREATOR_INSTANCE_NUMBER, CREATOR_PDBNAME, and so on.

Key usage information: Key usage information determines the database or PDB where the key is being used. It also helps determine whether a key is in active use or not.

The V\$ENCRYPTION_KEYS view includes columns such as ACTIVATING_DBNAME, ACTIVATING DBID, ACTIVATING INSTANCE NAME, ACTIVATING PDBNAME, and so on.

• **User-defined information and other information:** When creating a key, you can tag it with information using the TAG option. Each key contains important information such as whether or not it has been backed up.

The V\$ENCRYPTION_KEYS view includes columns such as KEY_ID, TAG, and other miscellaneous columns, for example BACKED UP.

TDE Master Key Attributes and Tag are only supported with Oracle Key Vault and Oracle Cloud Infrastructure (OCI) Key Management Service (KMS).

7.2.1.2 Finding the TDE Master Encryption Key That Is in Use

A TDE master encryption key that is in use is the encryption key that was activated most recently for the database.

• To find the TDE master encryption key, query the V\$ENCRYPTION_KEYS dynamic view.

For example:

7.2.2 Creating Custom TDE Master Encryption Key Attributes for Reports

Custom TDE master encryption key attributes enable you to defined attributes that are specific to your needs.

- About Creating Custom Attribute Tags
 Attribute tags enable you to monitor specific activities users perform, such as accessing a particular terminal ID.
- Creating a Custom Attribute Tag

 To create a custom attribute tag, you must use the SET TAG clause of the ADMINISTER KEY MANAGEMENT statement.

7.2.2.1 About Creating Custom Attribute Tags

Attribute tags enable you to monitor specific activities users perform, such as accessing a particular terminal ID.

By default, Oracle Database defines a set of attributes that describe various characteristics of the TDE master encryption keys that you create, such as the creation time, database in which the TDE master encryption key is used, and so on. These attributes are captured by the V\$ENCRYPTION KEY dynamic view.

You can create custom attributes that can be captured by the TAG column of the $V\$ENCRYPTION_KEYS$ dynamic view. This enables you to define behaviors that you may want to monitor, such as users who perform activities on encryption keys. The tag can encompass multiple attributes, such as session IDs from a specific terminal.

After you create the tag for a TDE master encryption key, its name should appear in the TAG column of the V\$ENCRYPTION_KEYS view for that TDE master encryption key. If you create a tag for the secret, then the tag appears in the SECRET TAG column of the

V\$CLIENT_SECRETS view. If you create a secret with a tag, then the tag appears in the SECRET_TAG column of the V\$CLIENT_SECRETS view.

7.2.2.2 Creating a Custom Attribute Tag

To create a custom attribute tag, you must use the SET TAG clause of the ADMINISTER KEY MANAGEMENT statement.

- Connect to the united mode CDB root or isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. If necessary, query the TAG column of the V\$ENCRYPTION_KEY dynamic view to find a listing of existing tags for the TDE master encryption keys.

When you create a new tag for a TDE master encryption key, it overwrites the existing tag for that TDE master encryption key.

3. Create the custom attribute tag by using the following syntax:

```
ADMINISTER KEY MANAGEMENT SET TAG 'tag'
FOR 'master_key_identifier'
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING 'backup identifier']];
```

In this specification

- tag is the associated attributes or information that you define. Enclose this information in single quotation marks (' ').
- master_key_identifier identifies the TDE master encryption key for which the tag is set. To find a list of TDE master encryption key identifiers, query the KEY_ID column of the V\$ENCRYPTION KEYS dynamic view.
- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
 operation. You must open the TDE wallet for this operation.
- IDENTIFIED BY can be one of the following settings:
 - EXTERNAL STORE uses the keystore password stored in the external store to perform the keystore operation.
 - keystore password is the password that was used to create the keystore.
- backup_identifier defines the tag values. Enclose this setting in single quotation marks (' ') and separate each value with a colon.

For example, to create a tag that uses two values, one to capture a specific session ID and the second to capture a specific terminal ID:

```
ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY USING TAG 'sessionid=3205062574:terminal=xcvt' IDENTIFIED BY keystore_password WITH BACKUP; keystore altered.
```

Both the session ID (3205062574) and terminal ID (xcvt) can derive their values by using either the SYS_CONTEXT function with the USERENV namespace, or by using the USERENV function.

7.2.3 Setting or Rekeying the TDE Master Encryption Key in the Keystore

You can set or rekey the TDE master encryption key for both TDE wallets and external keystores.

- About Setting or Rekeying the TDE Master Encryption Key in the Keystore
 You can set or rekey the TDE master encryption key for both software passwordbased and external keystores.
- Creating, Tagging, and Backing Up a TDE Master Encryption Key
 The ADMINISTER KEY MANAGEMENT statement enables you to create, tag, and back
 up a TDE master encryption key.
- About Rekeying the TDE Master Encryption Key
 Oracle Database uses a unified TDE Master Encryption Key for both TDE column
 encryption and TDE tablespace encryption.
- Rekeying the TDE Master Encryption Key
 You can use the ADMINISTER KEY MANAGEMENT statement to rekey a TDE master
 encryption key.
- Changing the TDE Master Encryption Key for a Tablespace
 You can use the ENCRYPT and REKEY clauses of the ALTER TABLESPACE statement to
 encrypt a tablespace.

7.2.3.1 About Setting or Rekeying the TDE Master Encryption Key in the Keystore

You can set or rekey the TDE master encryption key for both software password-based and external keystores.

The TDE master encryption key is stored in an external security module (keystore), and it is used to protect the TDW table keys and tablespace encryption keys. By default, the TDE master encryption key is a system-generated random value created by Transparent Data Encryption (TDE).

Use the ADMINISTER KEY MANAGEMENT statement to set or reset (REKEY) the TDE master encryption key. When the master encryption key is set, then TDE is considered enabled and cannot be disabled.

Before you can encrypt or decrypt database columns or tablespaces, you must generate a TDE master encryption key. Oracle Database uses the same TDE master encryption key for both TDE column encryption and TDE tablespace encryption. The instructions for setting a software or hardware TDE master encryption key explain how to generate a tDE master encryption key.

Related Topics

- Step 3: Set the TDE Master Encryption Key in the TDE Wallet
 Once the TDE wallet is open, you can set a TDE master encryption key for it.
- Step 3: Set the TDE Master Encryption Key in Oracle Key Vault
 After you have opened the connection to Oracle Key Vault, you are ready to set the TDE master encryption key.

7.2.3.2 Creating, Tagging, and Backing Up a TDE Master Encryption Key

The ADMINISTER KEY MANAGEMENT statement enables you to create, tag, and back up a TDE master encryption key.

 Create and back up the TDE master encryption key, and apply a tag, by using the following syntax:

```
ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY
[USING TAG 'tag']
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
WITH BACKUP [USING 'backup identifier'];
```

In this specification:

- tag is the tag that you want to create. Enclose this tag in single quotation marks ('').
- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
 operation. You must open the TDE wallet for this operation.
- IDENTIFIED BY can be one of the following settings:
 - * EXTERNAL STORE uses the keystore password stored in the external store to perform the keystore operation.
 - * keystore_password is either TDE_wallet_password or external_key_manager_password. You must enclose the password string in double quotation marks (" ").
- WITH BACKUP backs the TDE master encryption key up in the same location as the key, as identified by the WRL_PARAMETER column of the V\$ENCRYPTION_WALLET view. To find the WRL_PARAMETER values for all of the database instances, query the GV\$ENCRYPTION WALLET view.

You must back up password-based TDE wallets. You do not need to use it for autologin or local auto-login TDE wallets. Optionally, include the USING backup_identifier clause to add a description of the backup. Enclose this identifier in single quotation marks (' ').

For example:

```
ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY USING TAG 'backups"

IDENTIFIED BY keystore_password

WITH BACKUP USING 'hr.emp_key_backup';

keystore altered.
```

Oracle Database uses the keystore in the keystore location specified by the WALLET_ROOT parameter in the initialization parameter file to store the TDE master encryption key.

Related Topics

Creating Custom TDE Master Encryption Key Attributes for Reports
 Custom TDE master encryption key attributes enable you to defined attributes that are specific to your needs.

7.2.3.3 About Rekeying the TDE Master Encryption Key

Oracle Database uses a unified TDE Master Encryption Key for both TDE column encryption and TDE tablespace encryption.

When you rekey the TDE master encryption key for TDE column encryption, the TDE Master Encryption Key for TDE tablespace encryption also is rekeyed. Rekey the TDE Master Encryption Key only if it was compromised or as per the security policies of the organization. This process deactivates the previous TDE master encryption key.

For better security and to meet compliance regulations, periodically rekey the TDE master encryption key. This process deactivates the previous TDE master encryption key, creates a new TDE master encryption key, and then activates it. You can check the keys that were created recently by querying the <code>CREATION_TIME</code> column in the <code>V\$ENCRYPTION_KEYS</code> view. To find the keys that were activated recently, query the <code>ACTIVATION_TIME</code> column in the <code>V\$ENCRYPTION_KEYS</code> view.

You cannot change the TDE master encryption key or rekey a TDE master encryption key for an auto-login keystore. Because auto-login keystores do not have a password, an administrator or a privileged user can change the keys without the knowledge of the security officer. However, if both the auto-login and the password-based keystores are present in the configured location (as set in the sqlnet.ora file), then when you rekey the TDE master encryption key, a TDE master encryption key is added to both the auto-login and password-based keystores. If the auto-login keystore is in use in a location that is different from that of the password-based keystore, then you must recreate the auto-login keystore.

Do not perform a rekey operation of the master key concurrently with an online tablespace rekey operation. You can find if an online tablespace is in the process of being TDE Master Encryption Keyed by issuing the following query:

SELECT TS#, ENCRYPTIONALG, STATUS FROM V\$ENCRYPTED TABLESPACES;

A status of REKEYING means that the corresponding tablespace is still being rekeyed.

You cannot add new information to auto-login keystores separately.

7.2.3.4 Rekeying the TDE Master Encryption Key

You can use the ADMINISTER KEY MANAGEMENT statement to rekey a TDE master encryption key.

- 1. Connect to the united mode CDB root or isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. If you are rekeying the TDE master encryption key for a keystore that has auto login enabled, then ensure that both the auto login keystore, identified by the .sso file, and the encryption keystore, identified by the .p12 file, are present.

You can find the location of these files by querying the WRL_PARAMETER column of the V\$ENCRYPTION_WALLET view. To find the WRL_PARAMETER values for all of the database instances, query the GV\$ENCRYPTION WALLET view.

3. Rekey the TDE master encryption key by using the following syntax:

```
ADMINISTER KEY MANAGEMENT SET [ENCRYPTION] KEY
[FORCE KEYSTORE]
[USING TAG 'tag_name']
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING 'backup identifier']];
```

In this specification:

- tag is the associated attributes and information that you define. Enclose this setting in single quotation marks (' ').
- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this operation. You must open the TDE wallet for this operation.
- IDENTIFIED BY can be one of the following settings:
 - EXTERNAL STORE uses the keystore password stored in the external store to perform the keystore operation.
 - keystore_password is the mandatory keystore password that you created when you created the keystore in Step 1: Create the TDE Wallet.
- WITH BACKUP creates a backup of the keystore. You must use this option for password-based and external keystores. Optionally, you can use the USING clause to add a brief description of the backup. Enclose this description in single quotation marks (' '). This identifier is appended to the named keystore file (for example, ewallet_time-stamp_emp_key_backup.p12). Follow the file naming conventions that your operating system uses.

For example:

```
ADMINISTER KEY MANAGEMENT SET KEY FORCE KEYSTORE IDENTIFIED BY keystore_password WITH BACKUP USING 'emp_key_backup'; keystore altered.
```

Related Topics

- Step 2: Open the TDE Wallet
 Depending on the type of TDE wallet you create, you must manually open the wallet
 before you can use it.
- Step 2: Open the Connection to Oracle Key Vault
 After you have configured the database to use Oracle Key Vault for TDE key management, you must open the connection to Oracle Key Vault before you can use it.

7.2.3.5 Changing the TDE Master Encryption Key for a Tablespace

You can use the ENCRYPT and REKEY clauses of the ALTER TABLESPACE statement to encrypt a tablespace.

 Connect to the united mode CDB root or isolated mode PDB as a user who has been granted administrative privileges. 2. Ensure that the tablespace open in read-write mode.

You can query the STATUS column of the V\$INSTANCE dynamic view to find if a database is open and the OPEN_MODE column of the V\$DATABASE view to find if it in read-write mode.

3. If necessary, open the database in read-write mode.

ALTER DATABASE OPEN READ WRITE;

4. Run the ALTER TABLESPACE **SQL** statement to encrypt the tablespace.

If the tablespace has not yet been encrypted, then use the <code>ENCRYPT</code> clause:

ALTER TABLESPACE encrypt ts ENCRYPTION USING 'AES256' ENCRYPT;

To change the encryption of the SYSTEM, SYSAUX, or UNDO tablespace, you must rekey the tablespace online. Use the ONLINE and REKEY clauses. For example, to change the encryption algorithm of the SYSTEM tablespace:

ALTER TABLESPACE SYSTEM ENCRYPTION ONLINE USING 'AES256' REKEY;

7.2.4 Exporting and Importing the TDE Master Encryption Key

You can export and import the TDE master encryption key in different ways.

- About Exporting and Importing the TDE Master Encryption Key
 Oracle Database features such as transportable tablespaces and Oracle Data
 Pump move data that is possibly encrypted between databases.
- About Exporting TDE Master Encryption Keys
 You can use ADMINISTER KEY MANAGEMENT EXPORT to export TDE master
 encryption keys from a keystore, and then import them into another keystore.
- Exporting a TDE Master Encryption Key
 The ADMINISTER KEY MANAGEMENT statement with the EXPORT [ENCRYPTION] KEYS
 WITH SECRET clause exports a TDE master encryption key.
- Example: Exporting a TDE Master Encryption Key by Using a Subquery
 The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS statement can export
 a TDE master encryption key by using a subquery.
- Example: Exporting a List of TDE Master Encryption Key Identifiers to a File The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS WITH SECRET statement can export a list of TDE master encryption key identifiers to a file.
- Example: Exporting All TDE Master Encryption Keys of the Database
 The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS SQL statement can export all TDE master encryption keys of a database.
- About Importing TDE Master Encryption Keys
 The ADMINISTER KEY MANAGEMENT IMPORT statement can import exported TDE master encryption keys from a key export file into a target keystore.
- Importing a TDE Master Encryption Key
 The ADMINISTER KEY MANAGEMENT statement with the IMPORT [ENCRYPTION] KEYS
 WITH SECRET clause can import a TDE master encryption key.
- Example: Importing a TDE Master Encryption Key
 You can use the ADMINISTER KEY MANAGEMENT IMPORT KEYS SQL statement to
 import a TDE master encryption key.

How Keystore Merge Differs from TDE Master Encryption Key Export or Import
The keystore merge operation differs from the TDE master encryption key export and
import operations.

7.2.4.1 About Exporting and Importing the TDE Master Encryption Key

Oracle Database features such as transportable tablespaces and Oracle Data Pump move data that is possibly encrypted between databases.

These are some common scenarios in which you can choose to export and import TDE master encryption keys to move them between source and target keystores. For Data Guard (Logical Standby), you must copy the keystore that is in the primary database to the standby database. Instead of merging the primary database keystore with the standby database, you can export the TDE master encryption key that is in use and then import it to the standby database. Moving transportable tablespaces that are encrypted between databases requires that you export the TDE master encryption key at the source database and then import it into the target database.

7.2.4.2 About Exporting TDE Master Encryption Keys

You can use ADMINISTER KEY MANAGEMENT EXPORT to export TDE master encryption keys from a keystore, and then import them into another keystore.

A TDE master encryption key is exported together with its key identifier and key attributes. The exported keys are protected with a password (secret) in the export file.

You can specify the TDE master encryption keys to be exported by using the WITH IDENTIFIER clause of the ADMINSITER KEY MANAGENT EXPORT statement. To export the TDE master encryption keys, you can either specify their key identifiers as a comma-separated list, or you can specify a query that enumerates their key identifiers. Be aware that Oracle Database runs the query determining the key identifiers within the current user's rights and not with definer's rights.

If you omit the WITH IDENTIFER clause, then all of the TDE master encryption keys of the database are exported.

Related Topics

• Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode
In isolated mode, the EXPORT and IMPORT clauses of ADMINISTER KEY MANAGEMENT EXPORT
can export or import master encryption keys for a PDB.

7.2.4.3 Exporting a TDE Master Encryption Key

The ADMINISTER KEY MANAGEMENT statement with the EXPORT [ENCRYPTION] KEYS WITH SECRET clause exports a TDE master encryption key.

Export the TDE master encryption keys by using the following syntax:

```
ADMINISTER KEY MANAGEMENT EXPORT [ENCRYPTION] KEYS
WITH SECRET "export_secret"
TO 'file_path'
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH IDENTIFIER IN 'key_id1', 'key_id2', 'key_idn' | (SQL_query)];
```

In this specification:

- export_secret is a password that you can specify to encrypt the export the file that contains the exported keys. Enclose this secret in double quotation marks (" "), or you can omit the quotation marks if the secret has no spaces.
- file_path is the complete path and name of the file to which the keys must be exported. Enclose this path in single quotation marks (' '). You can export to regular file systems only.
- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
 operation. You must open the TDE wallet for this operation.
- IDENTIFIED BY can be one of the following settings:
 - * EXTERNAL STORE uses the keystore password stored in the external store to perform the keystore operation.
 - * TDE wallet password is the password of the keystore containing the keys.
- key_id1, key_id2, key_idn is a string of one or more TDE master encryption key identifiers for the TDE master encryption key being exported. Separate each key identifier with a comma and enclose each of these key identifiers in single quotation marks (' '). To find a list of TDE master encryption key identifiers, query the KEY ID column of the V\$ENCRYPTION KEYS dynamic view.
- SQL_query is a query that fetches a list of the TDE master encryption key identifiers. It should return only one column which contains the TDE master encryption key identifiers. This query is run with current user rights.

7.2.4.4 Example: Exporting a TDE Master Encryption Key by Using a Subquery

The administer key management export encryption keys statement can export a TDE master encryption key by using a subquery.

Example 7-2 shows how to export TDE master encryption keys whose identifiers are fetched by a query to a file called <code>export.exp</code>. The TDE master encryption keys in the file are encrypted using the secret <code>my_secret</code>. The <code>SELECT</code> statement finds the identifiers for the TDE master encryption keys to be exported.

Example 7-1 Exporting a List of TDE Master Encryption Key Identifiers to a File

```
ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS
WITH SECRET "my_secret"
TO '/TDE/export.exp'
FORCE KEYSTORE
IDENTIFIED BY password
WITH IDENTIFIER IN 'AdoxnJ0uH08cv7xkz83ovwsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA,',
'AW5z3CoyKE/yv3cNT5CWCXUAAAAAAAAAAAAAAAAAAAAAAAAA,';
```

7.2.4.5 Example: Exporting a List of TDE Master Encryption Key Identifiers to a File

keystore altered.

The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS WITH SECRET statement can export a list of TDE master encryption key identifiers to a file.

Example 7-1 shows how to export TDE master encryption keys by specifying their identifiers as a list, to a file called export.exp. TDE master encryption keys in the file

are encrypted using the secret my_secret . The identifiers of the TDE master encryption key to be exported are provided as a comma-separated list.

Example 7-2 Exporting TDE Master Encryption Key Identifiers by Using a Subquery

```
ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS
WITH SECRET "my_secret" TO '/etc/TDE/export.exp'
FORCE KEYSTORE
IDENTIFIED BY password
WITH IDENTIFIER IN (SELECT KEY_ID FROM V$ENCRYPTION_KEYS WHERE ROWNUM <3);
keystore altered.
```

7.2.4.6 Example: Exporting All TDE Master Encryption Keys of the Database

The administer key management export encryption keys SQL statement can export all TDE master encryption keys of a database.

Example 7-3 shows how to export all of the TDE master encryption keys of the database to a file called export.exp. The TDE master encryption keys in the file are encrypted using the secret my secret.

Example 7-3 Exporting All of the TDE Master Encryption Keys of the Database

```
ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS WITH SECRET "my_secret" TO '/etc/TDE/export.exp' FORCE KEYSTORE IDENTIFIED BY password; keystore altered.
```

7.2.4.7 About Importing TDE Master Encryption Keys

The ADMINISTER KEY MANAGEMENT IMPORT statement can import exported TDE master encryption keys from a key export file into a target keystore.

You cannot re-import TDE master encryption keys that have already been imported.

Related Topics

• Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode
In isolated mode, the EXPORT and IMPORT clauses of ADMINISTER KEY MANAGEMENT EXPORT
can export or import master encryption keys for a PDB.

7.2.4.8 Importing a TDE Master Encryption Key

The administer key management statement with the import [encryption] keys with secret clause can import a TDE master encryption key.

Use the following syntax to import a TDE master encryption key:

```
ADMINISTER KEY MANAGEMENT IMPORT [ENCRYPTION] KEYS
WITH SECRET "import_secret"
FROM 'file_name'
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING 'backup_identifier']];
```

In this specification:

- import_secret is the same password that was used to encrypt the keys during the export operation. Enclose this secret in double quotation marks (" "), or you can omit the quotation marks if the secret has no spaces.
- file_name is the complete path and name of the file from which the keys need to be imported. Enclose this setting in single quotation marks (' ').
- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this operation. You must open the TDE wallet for this operation.
- IDENTIFIED BY can be one of the following settings:
 - * EXTERNAL STORE uses the keystore password stored in the external store to perform the keystore operation.
 - * TDE_wallet_password is the password of the TDE wallet where the keys are being imported.
- WITH BACKUP must be used in case the target keystore was not backed up before the import operation. backup_identifier is an optional string that you can provide to identify the keystore backup. Enclose this setting in single quotation marks (' ').

7.2.4.9 Example: Importing a TDE Master Encryption Key

You can use the ADMINISTER KEY MANAGEMENT IMPORT KEYS SQL statement to import a TDE master encryption key.

Example 7-4 shows how to import the TDE master encryption key identifiers that are stored in the file <code>export.exp</code> and encrypted with the secret my_secret .

Example 7-4 Importing TDE Master Encryption Key Identifiers from an Export File

```
ADMINISTER KEY MANAGEMENT IMPORT KEYS WITH SECRET "my_secret" FROM '/etc/TDE/export.exp' FORCE KEYSTORE IDENTIFIED BY password WITH BACKUP; keystore altered.
```

7.2.4.10 How Keystore Merge Differs from TDE Master Encryption Key Export or Import

The keystore merge operation differs from the TDE master encryption key export and import operations.

Even though both the ADMINISTER KEY MANAGEMENT MERGE statement and the ADMINISTER KEY MANAGEMENT EXPORT and IMPORT statements eventually move the TDE master encryption keys from one keystore to the next, there are differences in how these two statements function.

The MERGE statement merges two keystores whereas the EXPORT and IMPORT
statements export the keys to a file or import the keys from a file. The keystore is
different from the export file, and the two cannot be used interchangeably. The
export file is not a keystore and cannot be configured to be used with a database

as a keystore. Similarly, the ${\tt IMPORT}$ statement cannot extract the TDE master encryption keys from the keystore.

- The MERGE statement merges all of the TDE master encryption keys of the specified keystores where as the EXPORT and IMPORT statements can be selective.
- The EXPORT and IMPORT statements require the user to provide both a location (filepath) and the file name of the export file, whereas the MERGE statement only takes in the location of the keystores.
- The file name of the keystores is fixed and is determined by the MERGE operation and can be either ewallet.p12 or cwallet.sso. The file names for the export files used in the EXPORT the IMPORT statements are specified by the user.
- The keystores on Automatic Storage Management (ASM) disk groups or regular file systems can be merged with MERGE statements. The export files used in the EXPORT and the IMPORT statements can only be a regular operating system file and cannot be located on an ASM disk group.
- The keystores merged using the MERGE statement do not need to be configured or in use with the database. The EXPORT statement can only export the keys from a keystore that is configured and in use with the database and is also open when the export is done. The IMPORT statement can only import the keys into a keystore that is open, configured, and in use with the database.
- The MERGE statement never modifies the metadata associated with the TDE master encryption keys. The EXPORT and IMPORT operations can modify the metadata of the TDE master encryption keys when required, such as during a PDB plug operation.

7.2.5 Converting from ENCRYPTION_WALLET_LOCATION to WALLET_ROOT and TDE_CONFIGURATION

You can convert the wallet location from using the sqlnet.ora ENCRYPTION_WALLET_LOCATION parameter to using the WALLET ROOT and TDE CONFIGURATION parameters instead.

The conversion applies to either file systems or Oracle Automatic Storage Management (Oracle ASM) configurations. This procedure assumes that you have already set the WALLET ROOT static initialization parameter and created a WALLET ROOT/tde directory.

- 1. Copy all the wallets to the WALLET ROOT/tde directory.
- 2. Restart the database.
- 3. Back up the database.
- **4.** Connect to the CDB root as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 5. Set the TDE_CONFIGURATION dynamic initialization parameter to FILE.

```
ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE" SCOPE = "BOTH" SID = "*";
```

- 6. Rename the wallets from where you copied them.
- 7. Remove the old ENCRYPTION_WALLET_LOCATION configuration setting from the sqlnet.ora file.

7.2.6 Management of TDE Master Encryption Keys Using Oracle Key Vault

You can use Oracle Key Vault to manage and share TDE master encryption keys across an enterprise.

Oracle Key Vault securely stores the keys in a central repository, along with other security objects such as credential files and Java keystores, and enables you to share these objects with other TDE-enabled databases.

Related Topics

- Migration of Keystores to and from Oracle Key Vault
 You can use Oracle Key Vault to migrate both TDE wallets and external keystores
 to and from Oracle Key Vault.
- Oracle Key Vault Administrator's Guide

7.3 Transparent Data Encryption Data Dynamic and Data Dictionary Views

You can query a set of dynamic and data dictionary views to find more information about Transparent Data Encryption (TDE) data.

Table 7-2 describes these dynamic and data dictionary views.

Table 7-2 Transparent Data Encryption Related Views

View	Description	
ALL_ENCRYPTED_COLUMNS	Displays encryption information about encrypted columns in the tables accessible to the current user	
DICTIONARY_CREDENTIALS_E NCRYPT	Indicates if credential data in the SYS.LINK\$ and SYS.SCHEDULER\$_CREDENTIAL system tables is encrypted	
DBA_ENCRYPTED_COLUMNS	Displays encryption information for all of the encrypted columns in the database	
USER_ENCRYPTED_COLUMNS	Displays encryption information for encrypted table columns in the current user's schema	
DBA_TABLESPACE_USAGE_MET RICS	Describes tablespace usage metrics for all types of tablespaces, including permanent, temporary, and undo tablespaces	
V\$CLIENT_SECRETS	Lists the properties of the strings (secrets) that were stored in the keystore for various features (clients).	
	In a multitenant environment, when you query this view in a PDB, then it displays information about keys that were created or activated for the current PDB. If you query this view in the root, then it displays this information about keys for all of the PDBs.	
V\$DATABASE_KEY_INFO	Displays information about the default encryption key that is used for the current database. The default is AES256.	
V\$ENCRYPTED_TABLESPACES	Displays information about the tablespaces that are encrypted	

Table 7-2 (Cont.) Transparent Data Encryption Related Views

Description
When used with keys that have been rekeyed with the ADMINISTER KEY MANAGEMENT statement, displays information about the TDE master encryption keys.
In a multitenant environment, when you query this view in a PDB, it displays information about keys that were created or activated for the current PDB. If you query this view in the root, it displays this information about keys for all of the PDBs.
Displays information on the status of the keystore and the keystore location for TDE
Displays supported encryption algorithms in the current PDB and is used by Oracle Recovery Manager (Oracle RMAN) to validate user-requested algorithms

Related Topics

• Oracle Database Reference

Administering United Mode

Administering united mode means managing the keystores, master encryption keys, and general Transparent Database Encryption (TDE) functionality.

- Administering Keystores and Master Encryption Keys in United Mode
 After you configure a keystore and master encryption key for use in united mode, you can perform tasks such as rekeying TDE master encryption keys.
- Administering Transparent Data Encryption in United Mode
 You can perform general administrative tasks with Transparent Data Encryption in united
 mode.

8.1 Administering Keystores and Master Encryption Keys in United Mode

After you configure a keystore and master encryption key for use in united mode, you can perform tasks such as rekeying TDE master encryption keys.

- Changing the Keystore Password in United Mode
 You can change the password of either a TDE wallet or an external keystore only in the
 CDB root.
- Backing Up a Password-Protected TDE Wallet in United Mode
 The BACKUP KEYSTORE clause of the ADMINISTER KEY MANAGEMENT statement backs up a password-protected TDE wallet.
- Closing Keystores in United Mode
 You can close both TDE wallet and external keystores in united mode, unless the system
 tablespace is encrypted.
- Creating TDE Master Encryption Keys for Later Use in United Mode
 You can create a TDE master encryption key that can be activated at a later date.
- Example: Creating a Master Encryption Key in All PDBs

 You can use the ADMINISTER KEY MANAGEMENT CREATE KEY USING TAG statement to create a TDE master encryption key in all PDBs.
- Activating TDE Master Encryption Keys in United Mode
 After you activate a TDE master encryption key, it can be used.
- Creating User-Defined TDE Master Encryption Keys
 You can create a user-defined TDE master encryption key outside the database by
 generating a TDE master encryption key ID.
- Rekeying the TDE Master Encryption Key in United Mode You can use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause to rekey a TDE master encryption key.
- Finding the TDE Master Encryption Key That Is in Use in United Mode
 A TDE master encryption key that is in use is the key that was activated most recently for the database.

- Creating a Custom Attribute Tag in United Mode
 To create a custom attribute tag in united mode, you must use the SET TAG clause
 of the ADMINISTER KEY MANAGEMENT statement.
- Moving TDE Master Encryption Keys into a New Keystore in United Mode
 You can move an existing TDE master encryption key into a new keystore from an
 existing password-protected keystore.
- Automatically Removing Inactive TDE Master Encryption Keys in United Mode
 In united mode, the REMOVE_INACTIVE_STANDBY_TDE_MASTER_KEY initialization
 parameter can configure the automatic removal of inactive TDE master encryption
 keys.
- Isolating a Pluggable Database Keystore
 Isolating a PDB keystore moves the master encryption key from the CDB root keystore into an isolated mode keystore in the a PDB.

8.1.1 Changing the Keystore Password in United Mode

You can change the password of either a TDE wallet or an external keystore only in the CDB root.

- Changing the Password-Protected TDE Wallet Password in United Mode
 To change the password of a password-protected TDE wallet in united mode, you
 must use the ADMINISTER KEY MANAGEMENT statement in the CDB root.
- Changing the Password of an External Keystore in United Mode
 To change the password of an external keystore, you must close the external keystore and then change the password from the external keystore management interface.

8.1.1.1 Changing the Password-Protected TDE Wallet Password in United Mode

To change the password of a password-protected TDE wallet in united mode, you must use the ADMINISTER KEY MANAGEMENT statement in the CDB root.

You can change this password at any time, as per the security policies, compliance guidelines, and other security requirements of your site. As part of the command to change the password, you will be forced to specify the WITH BACKUP clause, and thus forced to make a backup of the current TDE wallet. During the password change operation, Transparent Data Encryption operations such as encryption and decryption will continue to work normally. You can change this password at any time. You should change this password if you think it was compromised.

- 1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Use the following syntax to change the password for the keystore:

```
ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD [FORCE KEYSTORE]
IDENTIFIED BY
old_TDE_wallet_password SET new_TDE_wallet_password
WITH BACKUP [USING 'backup identifier'];
```

In this specification:

- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
 operation if the TDE wallet is closed, if an auto-login TDE wallet is configured and is
 currently open, or if a password-protected TDE wallet is configured and is currently
 closed.
- old TDE wallet password is the current password that you want to change.
- new TDE wallet password is the new password.
- You do not need to include the CONTAINER clause because the password can only be changed locally, in the CDB root.

The following example creates a backup of the keystore and then changes the password:

```
ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD IDENTIFIED BY old_password SET new_password WITH BACKUP USING 'before_password_change';
```

This example performs the same operation but uses the FORCE KEYSTORE clause in case the auto-login TDE wallet is in use or the password-protected TDE wallet is closed.

```
ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD FORCE KEYSTORE
IDENTIFIED BY old_password SET new_password
WITH BACKUP USING 'before_password_change';
keystore altered.
```

Related Topics

keystore altered.

Performing Operations That Require a Keystore Password
 Many ADMINISTER KEY MANAGEMENT operations require access to a keystore password, for both TDE wallets and external keystores.

8.1.1.2 Changing the Password of an External Keystore in United Mode

To change the password of an external keystore, you must close the external keystore and then change the password from the external keystore management interface.

- 1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT OR SYSKM privilege.
- Close the external keystore.
 - Close the connection to the external key manager:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE

IDENTIFIED BY "external_key_manager_password" | EXTERNAL STORE

CONTAINER = ALL;
```

• If the keystore was auto-opened by the database, then close the connection to the external key manager as follows:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE CONTAINER = ALL;
```

3. Change the Oracle Key Vault password.

```
WALLET_ROOT/okv/bin/okvutil changepwd -t wallet -l WALLET_ROOT/okv/ssl
```


4. Update the Oracle Key Vault password that enables an auto-open Oracle Key Vault keystore to use the new password that you set in step 3.

```
ADMINISTER KEY MANAGEMENT UPDATE SECRET
'new_Oracle_Key_Vault_password'
FOR CLIENT 'OKV-PASSWORD' TO [LOCAL] AUTO-LOGIN KEYSTORE
'WALLET ROOT/tde';
```

5. Update the Oracle Key Vault password that enables IDENTIFIED BY EXTERNAL STORE (IBES) to the new password that you set in step 3.

```
ADMINISTER KEY MANAGEMENT UPDATE SECRET
'new_Oracle_Key_Vault_password'
FOR CLIENT 'OKV-PASSWORD' TO [LOCAL] AUTO-LOGIN KEYSTORE
'WALLET ROOT/tde seps';
```

6. Open the connection to Oracle Key Vault.

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY EXTERNAL STORE;
```

Related Topics

Performing Operations That Require a Keystore Password
 Many ADMINISTER KEY MANAGEMENT operations require access to a keystore password, for both TDE wallets and external keystores.

8.1.2 Backing Up a Password-Protected TDE Wallet in United Mode

The BACKUP KEYSTORE clause of the ADMINISTER KEY MANAGEMENT statement backs up a password-protected TDE wallet.

- 1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Back up the keystore by using the following syntax:

```
ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE
[USING 'backup_identifier']
[FORCE KEYSTORE]

IDENTIFIED BY [EXTERNAL STORE | TDE_wallet_password]
[TO 'keystore location'];
```

In this specification:

- USING backup_identifier is an optional string that you can provide to identify the backup. Enclose this identifier in single quotation marks (' '). This identifier is appended to the named keystore file (for example, ewallet_time-stamp_emp_key_backup.p12).
- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this operation. You must open the TDE wallet for this operation.
- IDENTIFIED BY is required for the BACKUP KEYSTORE operation on a password-protected keystore because although the backup is simply a copy of the existing keystore, the status of the TDE master encryption key in the

password-protected keystore must be set to ${\tt BACKED}\ {\tt UP}$ and for this change the keystore password is required.

- keystore_location is the path at which the backup keystore is stored. This setting is restricted to the PDB when the PDB lockdown profile EXTERNAL_FILE_ACCESS setting is blocked in the PDB or when the PATH_PREFIX variable was not set when the PDB was created. If you do not specify the keystore_location, then the backup is created in the same directory as the original keystore. Enclose this location in single quotation marks (' ').
- You do not need to include the CONTAINER clause because the keystore can only be backup up locally, in the CDB root.

The following example backs up a TDE wallet in the same location as the source keystore.

```
ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE
USING 'hr.emp_keystore'
FORCE KEYSTORE
IDENTIFIED BY
TDE_wallet_password;
keystore altered.
```

In the following version, the password for the keystore is external, so the EXTERNAL STORE clause is used.

```
ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE USING 'hr.emp_keystore' FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE;
```

After you run this statement, an <code>ewallet_identifier.p12</code> file (for example, <code>ewallet_time-stamp</code> hr.emp keystore.p12) appears in the TDE wallet backup location.

Related Topics

Backing Up Password-Protected TDE Wallets
 When you back up a password-protected TDE wallet, you can create a backup identifier string to describe the backup type.

8.1.3 Closing Keystores in United Mode

You can close both TDE wallet and external keystores in united mode, unless the system tablespace is encrypted.

- About Closing Keystores
 After you open a keystore, it remains open until you shut down the database instance.
- Closing a TDE Wallet in United Mode
 You can close password-protected TDE wallets, auto-login TDE wallets, and local auto-login TDE wallets in united mode.
- Closing an External Keystore in United Mode
 To close an external keystore, you must use the ADMINISTER KEY MANAGEMENT statement with the SET KEYSTORE CLOSE clause.

8.1.3.1 About Closing Keystores

After you open a keystore, it remains open until you shut down the database instance.

When you restart the database instance, then auto-login and local auto-login TDE wallets automatically open when required (that is, when the TDE master encryption key must be accessed). However, TDE wallet password-based and external keystores do not automatically open. You must manually open them again before you can use them.

When you close a TDE wallet or an external keystore, you disable all of the encryption and decryption operations on the database. Hence, a database user or application cannot perform any operation involving encrypted data until the TDE wallet or keystore is reopened.

When you re-open a TDE wallet keystore after closing it, its contents are reloaded back into the database. Thus, if the contents had been modified (such as during a migration), the database will have the latest TDE wallet or keystore contents.

When you run the ALTER PLUGGABLE DATABASE CLOSE statement or the SHUTDOWN command for a PDB, a keystore in the OPEN state for the PDB remains open until a user who has the SYSKM administrative privilege manually closes it with the ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE statement.

You can check if a TDE wallet or keystore is closed by querying the STATUS column of the V\$ENCRYPTION WALLET view.

The following data operations will fail if the TDE wallet or keystore is not accessible:

- SELECT data from an encrypted column
- INSERT data into on an encrypted column
- CREATE a table with encrypted columns
- CREATE an encrypted tablespace

8.1.3.2 Closing a TDE Wallet in United Mode

You can close password-protected TDE wallets, auto-login TDE wallets, and local auto-login TDE wallets in united mode.

In the case of an auto-login TDE wallet, which opens automatically when it is accessed, you must first move it to a new location where it cannot be automatically opened, then you must manually close it. You must do this if you are changing your configuration from an auto-login TDE wallet to a password-protected TDE wallet: you change the configuration to stop using the auto-login TDE wallet (by moving the auto-login TDE wallet to another location where it cannot be automatically opened), and then closing the auto-login TDE wallet.

- 1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Use the ADMINISTER KEY MANAGEMENT statement to close the TDE wallet.
 - For a password-protected TDE wallet, use the following syntax if you are in the CDB root:


```
ADMINISTER KEY MANAGEMENT SET | FORCE KEYSTORE CLOSE [IDENTIFIED BY [EXTERNAL STORE | TDE_wallet_password]] [CONTAINER = ALL | CURRENT];
```

Use the SET clause to close the TDE wallet without force. If there is a dependent TDE wallet that is open (for example, an isolated mode PDB TDE wallet and you are trying to close the CDB root TDE wallet), then an ORA-46692 cannot close wallet error appears. If this happens, then use the FORCE clause instead of SET to temporarily close the dependent TDE wallet during the close operation. The STATUS column of the V\$ENCRYPTION WALLET view shows if a TDE wallet is open.

If you are in the united mode PDB, then either omit the CONTAINER clause or set it to CURRENT.

 For an auto-login or local auto-login TDE wallet, use this syntax if you are in the CDB root:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE [CONTAINER = ALL | CURRENT];
```

Closing a TDE wallet disables all of the encryption and decryption operations. Any attempt to encrypt or decrypt data or access encrypted data results in an error.

8.1.3.3 Closing an External Keystore in United Mode

To close an external keystore, you must use the ADMINISTER KEY MANAGEMENT statement with the SET KEYSTORE CLOSE clause.

- 1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT OF SYSKM privilege.
- 2. Use the Administer key management statement to close the external keystore.

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE

IDENTIFIED BY [EXTERNAL STORE | "external_key_manager_password"]

[CONTAINER = ALL | CURRENT];
```

For example:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY "external_key_manager_password" CONTAINER = ALL;
```

If an ORA-46692 cannot close wallet error appears, then check if any isolated mode keystores are open. To find the status of a keystore, query the STATUS column of the V\$ENCRYPTION WALLET view.

Closing a keystore disables all of the encryption and decryption operations. Any attempt to encrypt or decrypt data or access encrypted data results in an error.

8.1.4 Creating TDE Master Encryption Keys for Later Use in United Mode

You can create a TDE master encryption key that can be activated at a later date.

• About Creating a TDE Master Encryption Key for Later Use
The CREATE KEY clause of the ADMINISTER KEY MANAGEMENT statement can create a TDE
master encryption key to be activated at a later date.

Creating a TDE Master Encryption Key for Later Use in United Mode
 A TDE wallet must be opened before you can create a TDE master encryption key
 for use later on in united mode.

8.1.4.1 About Creating a TDE Master Encryption Key for Later Use

The CREATE KEY clause of the ADMINISTER KEY MANAGEMENT statement can create a TDE master encryption key to be activated at a later date.

You then can activate this key on the same database or export it to another database and activate it there.

This method of TDE master encryption key creation is useful in a multitenant environment when you must re-create the TDE master encryption keys. The CREATE KEY clause enables you to use a single SQL statement to generate a new TDE master encryption key for all of the PDBs within a multitenant environment. The creation time of the new TDE master encryption key is later than the activation of the TDE master encryption key that is currently in use. Hence, the creation time can serve as a reminder to all of the PDBs to activate the most recently created TDE master encryption key as soon as possible.

8.1.4.2 Creating a TDE Master Encryption Key for Later Use in United Mode

A TDE wallet must be opened before you can create a TDE master encryption key for use later on in united mode.

- 1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Create the TDE master encryption key by using the following syntax:

```
ADMINISTER KEY MANAGEMENT CREATE KEY [USING TAG 'tag']
[FORCE KEYSTORE]
IDENTIFIED BY EXTERNAL STORE | keystore_password
WITH BACKUP [USING 'backup_identifier']
[CONTAINER = ALL | CURRENT];
```

In this specification:

- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this operation. You must open the TDE wallet for this operation.
- tag is the associated attribute and information that you define. Enclose this setting in single quotation marks (' ').
- IDENTIFIED BY can be one of the following settings:
 - EXTERNAL STORE uses the keystore password stored in the external store to perform the keystore operation.
 - TDE_wallet_password is the mandatory TDE wallet password that you used when you created the original TDE wallet. It is case sensitive.
- WITH BACKUP backs up the TDE master encryption key in the same location as
 the key, as identified by the WRL_PARAMETER column of the
 V\$ENCRYPTION_WALLET view. To find the key locations for all of the database
 instances, query the GV\$ENCRYPTION WALLET view.

You must back up password-based TDE wallets. You do not need to back up auto-login or local auto-login TDE wallets. Optionally, include the USING

backup_identifier clause to add a description of the backup. Enclose backup identifier in single quotation marks (' ').

• CONTAINER: In the CDB root, set CONTAINER to either ALL or CURRENT. In a PDB, set it to CURRENT. In both cases, omitting CONTAINER defaults to CURRENT.

For example:

```
ADMINISTER KEY MANAGEMENT CREATE KEY
FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH BACKUP
CONTAINER = CURRENT;
```

- 3. If necessary, activate the TDE master encryption key.
 - a. Find the key ID.

b. Use this key ID to activate the key.

```
ADMINISTER KEY MANAGEMENT USE KEY
'AWSHWVYC2U+Nv3RVphn/yAIAAAAAAAAAAAAAAAAAAAAAAAAAAA
USING TAG 'quarter:second;description:Activate Key on standby'
IDENTIFIED BY password
WITH BACKUP;
```

8.1.5 Example: Creating a Master Encryption Key in All PDBs

You can use the ADMINISTER KEY MANAGEMENT CREATE KEY USING TAG statement to create a TDE master encryption key in all PDBs.

Example 8-1 shows how to create a master encryption key in all of the PDBs in a multitenant environment. It uses the FORCE KEYSTORE clause in the event that the auto-login keystore in the CDB root is open. The password is stored externally, so the EXTERNAL STORE setting is used for the IDENTIFIED BY clause. After you run this statement, a master encryption key is created in each PDB. You can find the identifiers for these keys as follows:

- Log in to the PDB and then query the TAG column of the V\$ENCRYPTION KEYS view.
- Log in to the CDB root and then query the INST_ID and TAG columns of the GV\$ENCRYPTION KEYS view.

You also can check the <code>CREATION_TIME</code> column of these views to find the most recently created key, which would be the key that you created from this statement. After you create the keys, you can individually activate the keys in each of the PDBs.

Example 8-1 Creating a Master Encryption Key in All of the PDBs

```
ADMINISTER KEY MANAGEMENT CREATE KEY USING TAG
'scope:all pdbs;description:Create Key for ALL PDBS'
FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE
WITH BACKUP
CONTAINER = ALL;
keystore altered.
```


8.1.6 Activating TDE Master Encryption Keys in United Mode

After you activate a TDE master encryption key, it can be used.

- About Activating TDE Master Encryption Keys
 You can activate a previously created or imported TDE master encryption key by
 using the USE KEY clause of ADMINISTER KEY MANAGEMENT.
- Activating a TDE Master Encryption Key in United Mode
 To activate a TDE master encryption key in united mode, you must open the keystore and use ADMINISTER KEY MANAGEMENT with the USE KEY clause.
- Example: Activating a TDE Master Encryption Key
 You can use the ADMINISTER KEY MANAGEMENT SQL statement to activate a
 TDE master encryption key.

8.1.6.1 About Activating TDE Master Encryption Keys

You can activate a previously created or imported TDE master encryption key by using the USE KEY clause of ADMINISTER KEY MANAGEMENT.

After you activate the master encryption key, it is used to encrypt all data encryption keys in your database. The key will be used to protect all of the column keys and all of the tablespace encryption keys. If you have deployed a logical standby database, then you must export the TDE master encryption keys after recreating them, and then import them into the standby database. You can have the TDE master encryption key in use on both the primary and the standby databases. To do so, you must activate the TDE master encryption key after you import it to the logical standby database.

8.1.6.2 Activating a TDE Master Encryption Key in United Mode

To activate a TDE master encryption key in united mode, you must open the keystore and use ADMINISTER KEY MANAGEMENT with the USE KEY Clause.

- 1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Query the ORIGIN and KEY_ID columns of the V\$ENCRYPTION_KEYS view to find the key identifier.

For example:

3. Use this key identifier to activate the TDE master encryption key by using the following syntax:

```
ADMINISTER KEY MANAGEMENT USE KEY 'key_identifier_from_V$ENCRYPTION_KEYS'
[USING TAG 'tag']
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
WITH BACKUP [USING 'backup_identifier'];
```

In this specification:

- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this operation. You must open the TDE wallet for this operation.
- WITH BACKUP backs up the wallet in the same location as original wallet, as identified
 by WALLET_ROOT/tde. To find the key locations for all of the database instances, query
 the V\$ENCRYPTION WALLET or GV\$ENCRYPTION WALLET view.

The WITH BACKUP clause is mandatory for all ADMINISTER KEY MANAGEMENT statements that modify the wallet. Optionally, include the USING <code>backup_identifier</code> clause to add a description of the backup. Enclose <code>backup_identifier</code> in single quotation marks (' ').

For example:

8.1.6.3 Example: Activating a TDE Master Encryption Key

You can use the ADMINISTER KEY MANAGEMENT SQL statement to activate a TDE master encryption key.

Example 8-2 shows how to activate a previously imported TDE master encryption key and then update its tag. This key is activated with the current database time stamp and time zone.

Example 8-2 Activating a TDE Master Encryption Key

ADMINISTER KEY MANAGEMENT USE KEY
'ARAHD762tUkkvyLgPzai6hMAAAAAAAAAAAAAAAAAAAAAAAAAAAA
'USING TAG 'quarter:second;description:Activate Key on standby'
IDENTIFIED BY password WITH BACKUP;
keystore altered.

In this version of the same operation, the FORCE KEYSTORE clause is added in the event that the auto-login keystore is in use, or if the keystore is closed. The password of the keystore is stored externally, so the EXTERNAL STORE setting is used for the IDENTIFIED BY clause.

ADMINISTER KEY MANAGEMENT USE KEY
'ARAHD762tUkkvyLgPzAi6hMAAAAAAAAAAAAAAAAAAAAAAAAAAAA
'USING TAG 'quarter:second;description:Activate Key on standby'
FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE WITH BACKUP;

8.1.7 Creating User-Defined TDE Master Encryption Keys

keystore altered.

You can create a user-defined TDE master encryption key outside the database by generating a TDE master encryption key ID.

About User-Defined TDE Master Encryption Keys
 A TDE master encryption key that is outside the database has its own user-generated ID, which tracks the use of the TDE master encryption key.

Creating a User-Defined TDE Master Encryption Key in United Mode
 To create a user-defined TDE master encryption key, use the ADMINISTER KEY
 MANAGEMENT statement with the SET | CREATE [ENCRYPTION] KEY clause.

8.1.7.1 About User-Defined TDE Master Encryption Keys

A TDE master encryption key that is outside the database has its own user-generated ID, which tracks the use of the TDE master encryption key.

You can use the ADMINISTER KEY MANAGEMENT to create and set user-defined TDE master encryption key IDs. After you generate the TDE master encryption key, you can bring this key into the database. Optionally, you can specify the TDE master encryption key ID in various ADMINISTER KEY MANAGEMENT statements.

This type of configuration benefits Oracle Fusion SaaS Cloud environments in that it enables you to generate a TDE master encryption key this complies with your site's requirements. This key that you generate supports the current encryption algorithms and can be used for TDE wallets.

After you generate the TDE master encryption key ID, you can encrypt your data as you normally would.

The TDE master encryption key and its corresponding ID will not be captured by any auditing logs.

8.1.7.2 Creating a User-Defined TDE Master Encryption Key in United Mode

To create a user-defined TDE master encryption key, use the ADMINISTER KEY MANAGEMENT statement with the SET | CREATE [ENCRYPTION] KEY clause.

- 1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Create the user-defined TDE master encryption key by using the following syntax:

```
ADMINISTER KEY MANAGEMENT SET | CREATE [ENCRYPTION] KEY 'mkid:mk | mk'

[USING ALGORITHM 'algorithm']

[FORCE KEYSTORE]

[USING TAG 'tag_name']

IDENTIFIED BY [EXTERNAL STORE | keystore_password]

WITH BACKUP [USING 'backup_identifier'];

[CONTAINER = CURRENT];
```

In this specification:

- SET | CREATE : Enter SET if you want to create the master and activate the TDE master encryption key now, or enter CREATE if you want to create the key for later use, without activating it yet. For SET KEY and USE KEY, you must be connected to the database that is supposed to use that key (CDB root container, united or isolated PDB). For CREATE KEY, you can be connected any united PDB, or the CDB root container, or the specific isolated PDB that is supposed to use that key later.
- mkid and mk:
 - mkid, the TDE master encryption key ID, is an optional 16-byte hexencoded value that you can specify or have Oracle Database generate.

mk, the TDE master encryption key, is a 32-byte hex-encoded value.

If you omit the mkid value but include the mk, then Oracle Database generates the mkid for the mk.

- USING ALGORITHM: Specify one of the following supported algorithms:
 - AES256
 - ARIA256

If you omit the algorithm, then the default, AES256, is used.

• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this operation. You must open the TDE wallet for this operation.

The following example includes a user-created TDE master encryption key but no TDE master encryption key ID, so that the TDE master encryption key is generated:

```
ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY
'3D432109DF88967A541967062A6F4E460E892318E307F017BA048707B402493C'
USING ALGORITHM 'ARIA256'
FORCE KEYSTORE
IDENTIFIED BY keystore password WITH BACKUP;
```

The next example creates user-defined keys for both the master encryption ID and the TDE master encryption key. It omits the algorithm specification, so the default algorithm AES256 is used.

```
ADMINISTER KEY MANAGEMENT CREATE ENCRYPTION KEY
'10203040506070801112131415161718:3D432109DF88967A541967062A6F4E460E892318E307F017B
A048707B402493C'
IDENTIFIED BY keystore password WITH BACKUP;
```

The next scenario, where TDE master encryption key and key-ID are generated outside of the database, shows how to support separation of duties. A key administrator inserts the key with a key_ID into the wallet by using the ADMINISTER KEY MANAGEMENT CREATE [ENCRYPTION] KEY statement. Then, the key administrator sends the key_ID to the database administrator, who then activates the key by using the ADMINISTER KEY MANAGEMENT USE KEY clause.

a. Create the key-ID, converting characters to upper case. For example, using OpenSSL:

```
$ openssl rand 16 | xxd -u -p
D20765EB721AF44D054B30FE87F8E49A
```

b. Create the TDE master encryption key. For example, using OpenSSL:

```
$ openssl rand -hex 32
5a089c8ea6ee21cba774f61e58d102665df4a979a34757836b3d066a3eb3db11
```

c. Create (but do not activate) a default AES256 master encryption key by inserting both the random key-ID and the key itself, separated by a :, into the wallet.

```
ADMINISTER KEY MANAGEMENT CREATE ENCRYPTION KEY
'D20765EB721AF44D054B30FE87F8E49A:5a089c8ea6ee21cba774f61e58d102665df4a979a3475
7836b3d066a3eb3db11'
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
WITH BACKUP [USING 'backup_identifier'];
```

d. The database administrator can retrieve the BASE64 key-ID from the database with the following SELECT statement:


```
SELECT ' ADMINISTER KEY MANAGEMENT USE KEY '''||KEY_ID||'''
USING TAG '''||SYS_CONTEXT('USERENV', 'CON_NAME')||' '||TO_CHAR
(SYS_EXTRACT_UTC (SYSTIMESTAMP),
'YYYY-MM-DD HH24:MI:SS"Z"')||'''
FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE WITH BACKUP;'
AS "USE KEY COMMAND" FROM V$ENCRYPTION KEYS WHERE TAG IS NULL;
```

Related Topics

Supported Encryption and Integrity Algorithms
 Oracle supports the AES, ARIA and DES algorithms.

8.1.8 Rekeying the TDE Master Encryption Key in United Mode

You can use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause to rekey a TDE master encryption key.

- 1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. If you are rekeying the TDE master encryption key for a keystore that has auto login enabled, then ensure that both the auto login keystore, identified by the .sso file, and the encryption keystore, identified by the .p12 file, are present.

You can find the location of these files by querying the WRL_PARAMETER column of the V\$ENCRYPTION_WALLET view. To find the WRL_PARAMETER values for all of the database instances, query the GV\$ENCRYPTION WALLET view.

3. Rekey the TDE master encryption key by using the following syntax:

```
ADMINISTER KEY MANAGEMENT SET [ENCRYPTION] KEY
[FORCE KEYSTORE]
[USING TAG 'tag_name']
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING 'backup_identifier']]
[CONTAINER = ALL | CURRENT];
```

In this specification:

- tag is the associated attributes and information that you define. Enclose this setting in single quotation marks (' ').
- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this operation. You must open the TDE wallet for this operation.
- IDENTIFIED BY can be one of the following settings:
 - EXTERNAL STORE uses the keystore password stored in the external store to perform the keystore operation.
 - keystore password is the password that was created for this keystore.
- CONTAINER: In the CDB root, set CONTAINER to either ALL or CURRENT. In a PDB, set it to CURRENT. In both cases, omitting CONTAINER defaults to CURRENT.

For example:

```
ADMINISTER KEY MANAGEMENT SET KEY
FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH BACKUP USING 'emp key backup'
```



```
CONTAINER = CURRENT;
keystore altered.
```

Related Topics

About Rekeying the TDE Master Encryption Key
 Oracle Database uses a unified TDE Master Encryption Key for both TDE column
 encryption and TDE tablespace encryption.

8.1.9 Finding the TDE Master Encryption Key That Is in Use in United Mode

A TDE master encryption key that is in use is the key that was activated most recently for the database.

In united mode, the TDE master encryption key in use of the PDB is the one that was activated most recently for that PDB.

To find the TDE master encryption key that is in use, query the V\$ENCRYPTION_KEYS
dynamic view.

For example:

```
SELECT KEY_ID
FROM V$ENCRYPTION_KEYS
WHERE ACTIVATION_TIME = (SELECT MAX(ACTIVATION_TIME)
     FROM V$ENCRYPTION_KEYS
     WHERE ACTIVATING PDBID = SYS CONTEXT('USERENV', 'CON ID'));
```

8.1.10 Creating a Custom Attribute Tag in United Mode

To create a custom attribute tag in united mode, you must use the SET TAG clause of the ADMINISTER KEY MANAGEMENT statement.

- 1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT OR SYSKM privilege.
- 2. If necessary, query the TAG column of the V\$ENCRYPTION_KEY dynamic view to find a listing of existing tags for the TDE master encryption keys.

When you create a new tag for a TDE master encryption key, it overwrites the existing tag for that TDE master encryption key.

3. Create the custom attribute tag by using the following syntax:

```
ADMINISTER KEY MANAGEMENT SET TAG 'tag'
FOR 'master_key_identifier'
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
WITH BACKUP [USING 'backup_identifier'];
```

In this specification

- tag is the associated attributes or information that you define. Enclose this information in single quotation marks (' ').
- master_key_identifier identifies the TDE master encryption key for which the tag
 is set. To find a list of TDE master encryption key identifiers, query the KEY_ID column
 of the V\$ENCRYPTION KEYS dynamic view.

- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this operation. You must open the TDE wallet for this operation.
- IDENTIFIED BY can be one of the following settings:
 - EXTERNAL STORE uses the keystore password stored in the external store to perform the keystore operation.
 - keystore password is the password that was created for this keystore.
- backup_identifier defines the tag values. Enclose this setting in single quotation marks (' ') and separate each value with a colon.

For example, to create a tag that uses two values, one to capture a specific session ID and the second to capture a specific terminal ID:

```
ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY USING TAG 'sessionid=3205062574:terminal=xcvt' IDENTIFIED BY keystore_password WITH BACKUP; keystore altered.
```

Both the session ID (3205062574) and terminal ID (xcvt) can derive their values by using either the SYS_CONTEXT function with the USERENV namespace, or by using the USERENV function.

Related Topics

About Creating Custom Attribute Tags
 Attribute tags enable you to monitor specific activities users perform, such as accessing a particular terminal ID.

8.1.11 Moving TDE Master Encryption Keys into a New Keystore in United Mode

You can move an existing TDE master encryption key into a new keystore from an existing password-protected keystore.

- About Moving TDE Master Encryption Keys into a New Keystore
 You can move an unused (and safely archived) TDE master encryption key into a
 new keystore.
- Moving a TDE Master Encryption Key into a New Keystore in United Mode
 In united mode, you can move an existing TDE master encryption key into a new
 keystore from an existing password-based TDE wallet.

8.1.11.1 About Moving TDE Master Encryption Keys into a New Keystore

You can move an unused (and safely archived) TDE master encryption key into a new keystore.

Use great caution when you decide to run ADMINISTER KEY MANAGEMENT MOVE KEYS. Even though this statement will not move an active master encryption key, it can still affect keys that are necessary for a range of database features. If you have deleted a key, then the data that was encrypted by that key is rendered permanently inaccessible (equivalent to deleting the data) for these features to be used. See

Related Topics at the end of this topic for more information about features that are affected by deleted keystores.

Therefore, before you move the keystore, it is very important that you safely archive it. Delete the keystore only after a period of time has passed, to ensure that the keystore is no longer really useful.

To move a TDE master encryption key into a new keystore, you use the ADMINISTER KEY MANAGEMENT MOVE KEYS statement. This statement does not move the active TDE master encryption key (that is, the key that is currently in use at the time that ADMINISTER KEY MANAGEMENT MOVE KEYS is issued) because the database is currently using it.

If you mistakenly use the ADMINISTER KEY MANAGEMENT MOVE KEYS statement instead of ADMINISTER KEY MANAGEMENT MERGE KEYSTORE when you are configuring a new TDE keystore (for example, when you are changing the TDE keystore configuration from one where the TDE wallet is located in the operating system's file system to one where the TDE wallet is located in Oracle Automatic Storage Management (Oracle ASM)), then the following symptoms may help you to identify the TDE misconfiguration that was introduced by the use of the wrong key management command:

- When you open the TDE keystore that was the target of the earlier ADMINISTER KEY MANAGEMENT MOVE KEYS operation, an ORA-28374: typed master key not found in wallet error is seen, because the active TDE master encryption key was not moved to that keystore.
- The value shown in the STATUS column of the V\$ENCRYPTION_WALLET view is OPEN_NO_MASTER_KEY after you open the new keystore. The OPEN_NO_MASTER_KEY status is expected, because the new TDE keystore that was mistakenly populated by means of the ADMINISTER KEY MANAGEMENT MOVE KEYS statement does not contain the active TDE master encryption key.

Related Topics

- Dangers of Deleting TDE Wallets
 Oracle strongly recommends that you do not delete TDE wallets.
- Features That Are Affected by Deleted Keystores
 Some features can be adversely affected if a keystore is deleted and a TDE master encryption key residing in that keystore is later needed.

8.1.11.2 Moving a TDE Master Encryption Key into a New Keystore in United Mode

In united mode, you can move an existing TDE master encryption key into a new keystore from an existing password-based TDE wallet.

This feature enables you to delete unused keystores. Before you move the keystore, ensure that it is safely archived. After you move the encryption key to a new keystore, and when you are sure that the old keystore is no longer needed, you then can delete the old keystore.

- 1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT OR SYSKM privilege.
- 2. Query the KEY_ID column of the V\$ENCRYPTION_KEYS view to find the key identifier of the keystore to which you want to move the keys.

For example:

```
SELECT CREATION_TIME, KEY_ID FROM V$ENCRYPTION_KEYS;
CREATION TIME
```


3. Move the key into a new keystore by using the following syntax:

```
ADMINISTER KEY MANAGEMENT

MOVE [ENCRYPTION] KEYS

TO NEW KEYSTORE 'keystore_location1'

IDENTIFIED BY keystorel_password

FROM [FORCE] KEYSTORE

IDENTIFIED BY keystore_password

[WITH IDENTIFIER IN

{ 'key_identififier' [, 'key_identifier' ]... | ( subquery ) } ]

[WITH BACKUP [USING 'backup_identifier']];
```

In this specification:

- keystore_location1 is the path to the wallet directory that will store the new keystore .p12 file. By default, this directory is in \$ORACLE_BASE/admin/ db unique name/wallet.
- keystore1_password is the password for the keystore from which the new keystore is moved.
- FORCE temporarily opens the keystore for this operation.
- keystore_password is the password for the keystore from which the key is moving.
- subquery can be used to find the exact key identifier that you want.
- backup_identifier is an optional description of the backup. Enclose backup identifier in single quotation marks (' ').

For example:

```
ADMINISTER KEY MANAGEMENT MOVE KEYS
TO NEW KEYSTORE '$ORACLE_BASE/admin/orcl/wallet'
IDENTIFIED BY keystore_password
FROM FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH IDENTIFIER IN
(SELECT KEY_ID FROM V$ENCRYPTION_KEYS WHERE ROWNUM < 2)
WITH BACKUP;
```

- 4. To delete the old keystore, go to the wallet directory and do the following:
 - a. Back up the .p12 file containing the keystore that you want to delete.
 - **b.** Manually delete the .p12 file containing the keystore.

To find the location of the keystore, open the keystore, and then query the WRL_PARAMETER column of the V\$ENCRYPTION_WALLET view.

Related Topics

Dangers of Deleting TDE Wallets
 Oracle strongly recommends that you do not delete TDE wallets.

8.1.12 Automatically Removing Inactive TDE Master Encryption Keys in United Mode

In united mode, the REMOVE_INACTIVE_STANDBY_TDE_MASTER_KEY initialization parameter can configure the automatic removal of inactive TDE master encryption keys.

- Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Locate the initialization parameter file for the database.

By default, the initialization parameter file is located in the \$ORACLE HOME/dbs directory.

 Edit the initialization parameter file to include the REMOVE_INACTIVE_STANDBY_TDE_MASTER_KEY initialization parameter.

For example:

```
remove inactive standby tde master key = true
```

Setting this parameter to TRUE enables the automatic removal of inactive TDE master encryption keys; setting it to FALSE disables the automatic removal.

8.1.13 Isolating a Pluggable Database Keystore

Isolating a PDB keystore moves the master encryption key from the CDB root keystore into an isolated mode keystore in the a PDB.

This process enables the keystore to be managed as a separate keystore in isolated mode. This way, an administrator who has been locally granted the ADMINISTER KEY MANAGEMENT privilege for the PDB can manage the keystore.

- Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT OR SYSKM privilege.
- Move the keys from the keystore of the CDB root into the isolated mode keystore of the PDB by using the following syntax:

```
ADMINISTER KEY MANAGEMENT [FORCE] ISOLATE KEYSTORE
IDENTIFIED BY isolated_keystore_password
FROM ROOT KEYSTORE
[FORCE KEYSTORE]
IDENTIFIED BY
[EXTERNAL STORE | united_keystore_password]
[WITH BACKUP [USING backup id]];
```

In this specification:

- FORCE is used when a clone of the PDB is using the master encryption key that is being isolated. The ADMINISTER KEY MANAGEMENT statement then copies (rather than moves) the keys from the wallet of the CDB root into the isolated mode PDB.
- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
 operation if an auto-login TDE wallet is open (and in use) or if the TDE wallet is
 closed.
- united_keystore_password: Knowledge of this password does not enable the user who performs the ISOLATE KEYSTORE operation privileges to perform ADMINISTER KEY

MANAGEMENT UNITE KEYSTORE operations on the CDB root. This password is the same as the keystore password in the CDB root.

After the keystore of a CDB root has been united with that of a PDB, all of the previously active (historical) master encryption keys that were associated with the CDB are moved to the keystore of the PDB.

3. Confirm that the united mode PDB is now an isolated mode PDB.

```
SELECT KEYSTORE_MODE FROM V$ENCRYPTION_WALLET;
```

The output should be ISOLATED.

After the united mode PDB has been converted to an isolated mode PDB, you can change the password of the keystore.

8.2 Administering Transparent Data Encryption in United Mode

You can perform general administrative tasks with Transparent Data Encryption in united mode.

- Moving PDBs from One CDB to Another in United Mode
 You can clone or relocate encrypted PDBs within the same container database, or
 across container databases.
- Unplugging and Plugging a PDB with Encrypted Data in a CDB in United Mode
 In united mode, for a PDB that has encrypted data, you can plug it into a CDB.
 Conversely, you can unplug this PDB from the CDB.
- Managing Cloned PDBs with Encrypted Data in United Mode
 In united mode, you can clone a PDB that has encrypted data in a CDB.
- How Keystore Open and Close Operations Work in United Mode
 You should be aware of how keystore open and close operations work in united
 mode.
- Finding the Keystore Status for All of the PDBs in United Mode
 You can create a convenience function that uses the V\$ENCRYPTION_WALLET view
 to find the status for keystores in all PDBs in a CDB.

8.2.1 Moving PDBs from One CDB to Another in United Mode

You can clone or relocate encrypted PDBs within the same container database, or across container databases.

If you are trying to move a non-CDB or a PDB in which the SYSTEM, SYSAUX, UNDO, or TEMP tablespace is encrypted, and using the manual export or import of keys, then you must first import the keys for the non-CDB or PDB in the target database's CDB\$ROOT before you create the PDB. Import of the keys are again required inside the PDB to associate the keys to the PDB.

Clone or relocate the non-CDB or PDB using the following syntax:

CREATE | RELOCATE PLUGGABLE DATABASE database_name KEYSTORE IDENTIFIED BY EXTERNAL STORE | target keystore password [NO REKEY];

Related Topics

Oracle Multitenant Administrator's Guide

8.2.2 Unplugging and Plugging a PDB with Encrypted Data in a CDB in United Mode

In united mode, for a PDB that has encrypted data, you can plug it into a CDB. Conversely, you can unplug this PDB from the CDB.

- Unplugging a PDB That Has Encrypted Data in United Mode
 In united mode, you can unplug a PDB with encrypted data and export it into an XML file or an archive file.
- Plugging a PDB That Has Encrypted Data into a CDB in United Mode
 To plug a PDB that has encrypted data into a CDB, you first plug in the PDB and then you create a master encryption key for the PDB.
- Unplugging a PDB That Has Master Encryption Keys Stored in an External Keystore in United Mode
 - You can unplug a PDB from one CDB that has been configured with an external keystore and then plug it into another CDB also configured with an external keystore.
- Plugging a PDB That Has Master Encryption Keys Stored in an External Keystore in United Mode

The ADMINISTER KEY MANAGEMENT statement can import a TDE master encryption key from an external keystore to a PDB that has been moved to another CDB.

8.2.2.1 Unplugging a PDB That Has Encrypted Data in United Mode

In united mode, you can unplug a PDB with encrypted data and export it into an XML file or an archive file.

You can check if a PDB has been unplugged by querying the STATUS column of the DBA_PDBS data dictionary view.

- 1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT OR SYSKM privilege.
- 2. Query the V\$ENCRYPTION WALLET dynamic view to ensure that the keystore is open.
- 3. Use the ENCRYPT USING transport_secret clause in the ALTER PLUGGABLE DATABASE statement when you unplug the PDB.

This process extracts the master encryption keys that belong to that PDB from the open wallet, and encrypts those keys with the transport secret clause.

You must use this clause if the PDB has encrypted data. Otherwise, an ORA-46680: master keys of the container database must be exported error is returned.

For example, to export the PDB data into an XML file:

```
ALTER PLUGGABLE DATABASE CDB1_PDB2
UNPLUG INTO '/tmp/cdb1_pdb2.xml'
ENCRYPT USING transport secret;
```

To export the PDB data into an archive file:

```
ALTER PLUGGABLE DATABASE CDB1_PDB2
UNPLUG INTO '/tmp/cdb1_pdb2.pdb'
ENCRYPT USING transport secret;
```


Related Topics

- Opening the TDE Wallet in a United Mode PDB

 To open a TDE wallet in united mode, you must use the ADMINISTER KEY

 MANAGEMENT statement with the SET KEYSTORE OPEN clause.
- Oracle Multitenant Administrator's Guide
- Oracle Database SQL Language Reference

8.2.2.2 Plugging a PDB That Has Encrypted Data into a CDB in United Mode

To plug a PDB that has encrypted data into a CDB, you first plug in the PDB and then you create a master encryption key for the PDB.

After you plug the PDB into the target CDB, and you must create a master encryption key that is unique to this plugged-in PDB. This is because the plugged-in PDB initially uses the key that was extracted from the wallet of the source PDB. When you plug an unplugged PDB into another CDB, the key version is set to 0 because this operation invalidates the history of the previous keys. You can check the key version by querying the KEY_VERSION column of the V\$ENCRYPTED_TABLESPACES dynamic view. Similarly, if a control file is lost and recreated, then the previous history of the keys is reset to 0. You can check if a PDB has already been plugged in by querying the STATUS column of the DBA PDBS data dictionary view.

- 1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Create the PDB by plugging the unplugged PDB into the CDB.

To perform this operation for united mode, include the $\tt DECRYPT$ USING transport secret clause.

You must use this clause if the XML or archive file for the PDB has encrypted data. Otherwise, an ORA-46680: master keys of the container database must be exported error is returned.

For example, if you had exported the PDB data into an XML file:

```
CREATE PLUGGABLE DATABASE CDB1_PDB2
USING '/tmp/cdb1_pdb2.xml'
KEYSTORE IDENTIFIED BY EXTERNAL STORE|TDE_wallet_password
DECRYPT USING transport secret;
```

If you had exported the PDB into an archive file:

```
CREATE PLUGGABLE DATABASE CDB1_PDB2
USING '/tmp/cdb1_pdb2.pdb'
KEYSTORE IDENTIFIED BY EXTERNAL STORE|TDE_wallet_password
DECRYPT USING transport secret;
```

During the open operation of the PDB after the plug operation, Oracle Database determines if the PDB has encrypted data. If so, it opens the PDB in the RESTRICTED mode.

If you want to create the PDB by cloning another PDB or from a non-CDB, and if the source database has encrypted data or a TDE master encryption key that has been set, then you must provide the TDE wallet password of the target TDE wallet by including the KEYSTORE IDENTIFIED BY TDE_wallet_password clause in the CREATE PLUGGABLE DATABASE ... FROM SQL statement. You must provide this password even if the target database is using an auto-login TDE wallet. You can

find if the source database has encrypted data or a TDE master encryption key set in the TDE wallet by querying the V\$ENCRYPTION KEYS dynamic view

3. Open the PDB.

```
ALTER PLUGGABLE DATABASE pdb name OPEN;
```

- **4.** Open the TDE wallet in the CDB root by using one of the following methods:
 - If the TDE wallet of the CDB is not open, open it for the container and all open PDBs by using the following syntax:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN [FORCE KEYSTORE]
IDENTIFIED BY EXTERNAL STORE | KEYSTORE PASSWORD CONTAINER = ALL;
```

• If the TDE wallet of the CDB is open, connect to the plugged-in PDB and then open the keystore by using the following syntax:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN [FORCE KEYSTORE]

IDENTIFIED BY EXTERNAL STORE | KEYSTORE PASSWORD [CONTAINER = CURRENT];
```

- 5. Optionally, open the keystore in the PDB.
- 6. In the plugged-in PDB, set the TDE master encryption key for the PDB by using the following syntax:

```
ADMINISTER KEY MANAGEMENT SET KEY
[FORCE KEYSTORE]
IDENTIFIED BY EXTERNAL STORE | TDE_wallet_password
WITH BACKUP [USING 'backup identifier'];
```

Related Topics

- Opening the TDE Wallet in a United Mode PDB
 To open a TDE wallet in united mode, you must use the ADMINISTER KEY MANAGEMENT statement with the SET KEYSTORE OPEN clause.
- Setting the TDE Master Encryption Key in the United Mode TDE Wallet
 To set the TDE master encryption key in the TDE wallet when the PDB is configured in
 united mode, use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause.

8.2.2.3 Unplugging a PDB That Has Master Encryption Keys Stored in an External Keystore in United Mode

You can unplug a PDB from one CDB that has been configured with an external keystore and then plug it into another CDB also configured with an external keystore.

1. Unplug the PDB.

You can check if a PDB has already been unplugged by querying the ${\tt STATUS}$ column of the ${\tt DBA}$ PDBS data dictionary view.

2. Move the master encryption keys of the unplugged PDB in the external keystore that was used at the source CDB to the external keystore that is in use at the destination CDB.

Refer to the documentation for the external keystore for information about moving master encryption keys between external keystores.

Related Topics

Oracle Multitenant Administrator's Guide

8.2.2.4 Plugging a PDB That Has Master Encryption Keys Stored in an External Keystore in United Mode

The ADMINISTER KEY MANAGEMENT statement can import a TDE master encryption key from an external keystore to a PDB that has been moved to another CDB.

1. Plug the unplugged PDB into the destination CDB that has been configured with the external keystore.

You can check if a PDB has already been plugged in by querying the STATUS column of the DBA PDBS data dictionary view.

After the plug-in operation, the PDB that has been plugged in will be in restricted mode.

- Ensure that the master encryption keys from the external keystore that has been configured with the source CDB are available in the external keystore of the destination CDB.
- 3. Connect to the plugged PDB as a user who was granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 4. Open the master encryption key of the plugged PDB.

For example:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY keystore passsword;
```

5. Import the external keystore master encryption key into the PDB.

```
ADMINISTER KEY MANAGEMENT IMPORT ENCRYPTION KEYS WITH SECRET "OKV" FROM 'OKV' IDENTIFIED BY keystore password;
```

6. Restart the PDB.

```
ALTER PLUGGABLE DATABASE PDB1 CLOSE; ALTER PLUGGABLE DATABASE PDB1 OPEN;
```

Related Topics

Oracle Multitenant Administrator's Guide

8.2.3 Managing Cloned PDBs with Encrypted Data in United Mode

In united mode, you can clone a PDB that has encrypted data in a CDB.

- About Managing Cloned PDBs That Have Encrypted Data in United Mode
 When you clone a PDB, you must make the master encryption key of the source
 PDB available to cloned PDB.
- Cloning a PDB with Encrypted Data in a CDB in United Mode
 The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY
 clause can clone a PDB that has encrypted data.
- Remotely Clone an Encrypted PDB in United Mode
 The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY
 clause can remotely clone a PDB that has encrypted data.

Relocating an Encrypted PDB in United Mode

The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause can relocate a PDB with encrypted data across CDBs.

8.2.3.1 About Managing Cloned PDBs That Have Encrypted Data in United Mode

When you clone a PDB, you must make the master encryption key of the source PDB available to cloned PDB.

This allows a cloned PDB to operate on the encrypted data. To perform the clone, you do not need to export and import the keys because Oracle Database transports the keys for you even if the cloned PDB is in a remote CDB. However, you will need to provide the keystore password of the CDB where you are creating the clone.

If the PDBs have encrypted data, then you can perform remote clone operations on PDBs between CDBs, and relocate PDBs across CDBs.

8.2.3.2 Cloning a PDB with Encrypted Data in a CDB in United Mode

The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause can clone a PDB that has encrypted data.

- 1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT OR SYSKM privilege.
- 2. Query the STATUS column of the V\$ENCRYPTION_WALLET dynamic view to ensure that the keystore is open in the CDB root.
- 3. Log in to the PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT and the CREATE PLUGGABLE DATABASE privileges.
- **4.** Use the CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause to clone the PDB.

For example:

```
CREATE PLUGGABLE DATABASE cdb1_pdb3

FROM cdb1_pdb1

FILE_NAME_CONVERT=('cdb1_pdb1', 'pdb3/cdb1_pdb3') KEYSTORE
IDENTIFIED BY EXTERNAL STORE|keystore password [NO REKEY];
```

Replace <code>keystore_password</code> with the password of the keystore of the CDB where the <code>cdb1 pdb3</code> clone is created.

By default, during a PDB clone or relocate operation, the data encryption keys are rekeyed, which implies a re-encryption of all encrypted tablespaces. This rekey operation can increase the time it takes to clone or relocate a large PDB. With the optional NO REKEY clause, the data encryption keys are not renewed, and encrypted tablespaces are not re-encrypted.

After you create the cloned PDB, encrypted data is still accessible by the clone using the master encryption key of the original PDB. After a PDB is cloned, there may be user data in the encrypted tablespaces. This encrypted data is still accessible because the master encryption key of the source PDB is copied over to the destination PDB. Because the clone is a copy of the source PDB but will eventually follow its own course and have its own data and security policies, you should rekey the master encrytion key of the cloned PDB.

5. Rekey the master encryption key of the cloned PDB.

For example:

```
ADMINISTER KEY MANAGEMENT SET KEY
FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH BACKUP USING 'emp key backup';
```

In this example, FORCE KEYSTORE is included because the keystore must be open during the rekey operation.

Before you rekey the master encryption key of the cloned PDB, the clone can still use master encryption keys that belong to the original PDB. However, these master encryption keys do not appear in the cloned PDB V\$ dynamic views. Rekeying the master encryption key ensures that the cloned PDB uses its own unique keys, which will be viewable in the V\$ views.

Related Topics

Opening the TDE Wallet in a United Mode PDB
 To open a TDE wallet in united mode, you must use the ADMINISTER KEY
 MANAGEMENT statement with the SET KEYSTORE OPEN clause.

8.2.3.3 Remotely Clone an Encrypted PDB in United Mode

The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause can remotely clone a PDB that has encrypted data.

- **1.** Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Query the STATUS column of the V\$ENCRYPTION_WALLET dynamic view to ensure that the keystore is open in the CDB root.
- 3. In this root container of the target database, create a database link that connects to the root container of the source CDB.

```
CREATE DATABASE LINK clone_link
CONNECT TO C##REMOTE_CLONE_USER
IDENTIFIED BY C##REMOTE_CLONE_USER_PASSWORD
USING '//source ip address:port/DB NAME';
```

4. Use the CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause to perform the clone of the PDB.

For example:

```
CREATE PLUGGABLE DATABASE cdb1_pdb3

FROM cbd_1_pdb1@clone_link

FILE_NAME_CONVERT=('cdb1_pdb1', 'pdb3/cdb1_pdb3') KEYSTORE

KEYSTORE IDENTIFIED BY EXTERNAL STORE|keystore_password;
```

Replace <code>keystore_password</code> with the password of the keystore of the CDB where the <code>cdb1 pdb3</code> clone is created.

After you create the cloned PDB, encrypted data is still accessible by the clone using the master encryption key of the original PDB. After a PDB is cloned, there may be user data in the encrypted tablespaces. This encrypted data is still accessible because the master encryption key of the source PDB is copied over to the destination PDB. Because the clone is a copy of the source PDB but will

eventually follow its own course and have its own data and security policies, you should rekey the master encrytion key of the cloned PDB.

5. Rekey the master encryption key of the remotely cloned PDB.

For example:

```
ADMINISTER KEY MANAGEMENT SET KEY
FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH BACKUP USING 'emp key backup';
```

In this example, FORCE KEYSTORE is included because the keystore must be open during the rekey operation.

Before you rekey the master encryption key of the cloned PDB, the clone can still use master encryption keys that belong to the original PDB. However, these master encryption keys do not appear in the cloned PDB V\$ dynamic views. Rekeying the master encryption key ensures that the cloned PDB uses its own unique keys, which will be viewable in the V\$ views.

Related Topics

- Opening the TDE Wallet in a United Mode PDB
 To open a TDE wallet in united mode, you must use the ADMINISTER KEY MANAGEMENT statement with the SET KEYSTORE OPEN clause.
- Oracle Multitenant Administrator's Guide
- Oracle Multitenant Administrator's Guide
- Oracle Database SQL Language Reference

8.2.3.4 Relocating an Encrypted PDB in United Mode

The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause can relocate a PDB with encrypted data across CDBs.

- 1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY MANAGEMENT OR SYSKM privilege.
- 2. Query the STATUS column of the V\$ENCRYPTION_WALLET dynamic view to ensure that the keystore is open in the CDB root.
- 3. Create a database link for the PDB that you want to clone.
 - Use the CREATE DATABASE LINK SQL statement to create the database link. You must create the database link by following the database link prerequisites that are required for cloning a remote PDB.
- **4.** Use the CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause to relocate the PDB.

For example:

```
CREATE PLUGGABLE DATABASE cdb1_pdb3

FROM cdb1_pdb1@clone_link RELOCATE [AVAILABILITY MAX]

[FILE_NAME_CONVERT=('cdb1_pdb1', 'pdb3/cdb1_pdb3')]

KEYSTORE IDENTIFIED BY EXTERNAL STORE|keystore password;
```


Replace $keystore_password$ with the password of the keystore of the CDB where the cdb1 pdb3 clone is created.

After you have relocated the PDB, the encrypted data is still accessible because the master encryption key of the source PDB is copied over to the destination PDB. The relocated PDB is a copy of the source PDB, but it will eventually follow its own course and have its own data and security policies. Therefore, you should rekey the master encrytion key of the cloned PDB.

- Connect to the PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT OR SYSKM privilege.
- 6. Rekey the master encryption key of the relocated PDB.

For example:

```
ADMINISTER KEY MANAGEMENT SET KEY
[FORCE KEYSTORE]
IDENTIFIED BY EXTERNAL STORE | keystore_password
WITH BACKUP [USING 'emp key backup'];
```

In this example, FORCE KEYSTORE is included because the keystore must be open during the rekey operation.

Before you rekey the master encryption key of the cloned PDB, the clone can still use master encryption keys that belong to the original PDB. However, these master encryption keys do not appear in the cloned PDB V\$ dynamic views. Rekeying the master encryption key ensures that the cloned PDB uses its own unique keys, which will be viewable in the V\$ views.

Related Topics

- Opening the TDE Wallet in a United Mode PDB
 To open a TDE wallet in united mode, you must use the ADMINISTER KEY MANAGEMENT Statement with the SET KEYSTORE OPEN clause.
- Oracle Multitenant Administrator's Guide
- Oracle Multitenant Administrator's Guide
- Oracle Database SQL Language Reference

8.2.4 How Keystore Open and Close Operations Work in United Mode

You should be aware of how keystore open and close operations work in united mode.

For each PDB in united mode, you must explicitly open the password-protected TDE wallet or external keystore in the PDB to enable the Transparent Data Encryption operations to proceed. (Auto-login and local auto-login TDE wallets open automatically.) Closing a keystore on a PDB blocks all of the Transparent Data Encryption operations on that PDB.

The open and close keystore operations in a PDB depend on the open and close status of the keystore in the CDB root.

Note the following:

You can create a separate keystore password for each PDB in united mode.

- Before you can manually open a password-protected TDE wallet or an external keystore in an individual PDB, you must open the wallet or keystore in the CDB root.
- If an auto-login TDE wallet is in use, or if the keystore is closed, then include the FORCE KEYSTORE clause in the ADMINISTER KEY MANAGEMENT statement when you open the wallet.
- If the keystore is a password-protected TDE wallet that uses an external store for passwords, then replace the password in the IDENTIFIED BY clause with EXTERNAL STORE.
- Before you can set a TDE master encryption key in an individual PDB, you must set the
 key in the CDB root. Oracle highly recommends that you include the USING TAG clause
 when you set keys in PDBs. For example:

```
SELECT ' ADMINISTER KEY MANAGEMENT SET KEY

USING TAG '''||SYS_CONTEXT('USERENV', 'CON_NAME')||' '||TO_CHAR (SYSDATE,
'YYYY-MM-DD HH24:MI:SS')||'''

FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE

WITH BACKUP CONTAINER = CURRENT; ' AS "SET KEY COMMAND" FROM DUAL;
```

Including the USING TAG clause enables you to quickly and easily identify the keys that belong to a certain PDB, and when they were created.

- Auto-login and local auto-login TDE wallets open automatically. You do not need to manually open these from the CDB root first, or from the PDB.
- If you close the keystore in the CDB root, then the keystores in the dependent PDBs also close. A keystore close operation in the root is the equivalent of performing a keystore close operation with the CONTAINER clause set to ALL.
- If you perform an ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN statement in the CDB root and set the CONTAINER clause to ALL, then the keystore will only be opened in each open PDB that is configured in united mode. Keystores for any PDBs that are configured in isolated mode are not opened.

8.2.5 Finding the Keystore Status for All of the PDBs in United Mode

You can create a convenience function that uses the $V\$ENCRYPTION_WALLET$ view to find the status for keystores in all PDBs in a CDB.

The V\$ENCRYPTION_WALLET view displays the status of the keystore in a PDB, whether it is open, closed, uses a software or an external keystore, and so on.

• To create a function that uses the V\$ENCRYPTION_WALLET view to find the keystore status, use the CREATE PROCEDURE PL/SQL statement.

Example 8-3 shows how to create this function.

Example 8-3 Function to Find the Keystore Status of All of the PDBs in a CDB

```
CREATE OR REPLACE PROCEDURE all_pdb_v$encryption_wallet
IS

err_occ BOOLEAN;
curr_pdb VARCHAR2(30);
pdb_name VARCHAR2(30);
wrl_type VARCHAR2(20);
status VARCHAR2(30);
wallet_type VARCHAR2(20);
```



```
wallet order
                   VARCHAR2(12);
   fully_backed_up VARCHAR2(15);
   cursor sel pdbs IS SELECT NAME FROM V$CONTAINERS
                     WHERE NAME <> 'PDB$SEED' order by con id desc;
 BEGIN
   -- Store the original PDB name \,
   SELECT sys context('userenv', 'con name') INTO curr pdb FROM DUAL;
   IF curr pdb <> 'CDB$ROOT' THEN
     dbms output.put line('Operation valid in ROOT only');
   END IF;
   err occ := FALSE;
   dbms output.put line('---');
                                                     WRL TYPE STATUS
   dbms output.put line('PDB NAME
');
   dbms_output.put_line('-----
      ----');
   dbms output.put line('WALLET TYPE WALLET ORDER FULLY BACKED UP');
   dbms_output.put_line('-----');
   dbms_output.put_line('WRL_PARAMETER');
dbms output.put line('-----
   FOR pdbinfo IN sel pdbs LOOP
     pdb name := DBMS ASSERT.ENQUOTE NAME (pdbinfo.name, FALSE);
     EXECUTE IMMEDIATE 'ALTER SESSION SET CONTAINER = ' || pdb name;
     BEGIN
       pdb name := rpad(substr(pdb name, 1, 30), 30, ' ');
       EXECUTE IMMEDIATE 'SELECT wrl type from V$ENCRYPTION WALLET' into wrl type;
       wrl type := rpad(substr(wrl type,1,8), 8, ' ');
       EXECUTE IMMEDIATE 'SELECT status from V$ENCRYPTION WALLET' into status;
       status := rpad(substr(status,1,30), 30, ' ');
       EXECUTE IMMEDIATE 'SELECT wallet type from V$ENCRYPTION WALLET' into wallet type;
       wallet type := rpad(substr(wallet type,1,20), 20, ' ');
       EXECUTE IMMEDIATE 'SELECT wallet order from V$ENCRYPTION WALLET' into
wallet order;
       wallet order := rpad(substr(wallet order,1,9), 12, ' ');
       EXECUTE IMMEDIATE 'SELECT fully_backed_up from V$ENCRYPTION_WALLET' into fully_backed_up;
       fully backed up := rpad(substr(fully backed up,1,9), 15, ' ');
       EXECUTE IMMEDIATE 'SELECT wrl parameter from V$ENCRYPTION WALLET' into wrl parameter;
       wrl parameter := rpad(substr(wrl parameter,1,79), 79, ' ');
       dbms output.put line(pdb name || ' ' || wrl type || ' ' || status);
       dbms output.put line(wallet type || ' ' || wallet order || ' ' || fully backed up);
       dbms output.put line(wrl parameter);
     EXCEPTION
       WHEN OTHERS THEN
       err_occ := TRUE;
     END:
   END LOOP;
   IF err occ = TRUE THEN
      dbms output.put line('One or more PDB resulted in an error');
 END;
```

set serveroutput on exec all_pdb_v\$encryption_wallet;

Administering Isolated Mode

Administering isolated mode means managing the keystores, master encryption keys, and general Transparent Database Encryption (TDE) functionality.

- Administering Keystores and TDE Master Encryption Keys in Isolated Mode
 After you create a keystore and a TDE master encryption key in isolated mode, you can
 perform administration tasks such as rekeying or tagging encryption keys.
- Administering Transparent Data Encryption in Isolated Mode
 You can perform a number of general administrative tasks with Transparent Data
 Encryption in isolated mode.

9.1 Administering Keystores and TDE Master Encryption Keys in Isolated Mode

After you create a keystore and a TDE master encryption key in isolated mode, you can perform administration tasks such as rekeying or tagging encryption keys.

To change the password of an external keystore, you must use the administrative interface of the external keystore. You cannot perform this operation by using the ADMINISTER KEY MANAGEMENT statement.

- Changing the Keystore Password in Isolated Mode
 You can change the password of a TDE wallet when the PDB is in isolated mode.
- Backing Up a Password-Protected TDE Wallet in Isolated Mode
 The BACKUP KEYSTORE clause of the ADMINISTER KEY MANAGEMENT statement backs up a password-protected TDE wallet.
- Merging TDE Wallets in Isolated Mode In isolated mode, you can merge TDE wallets.
- Closing Keystores in Isolated Mode
 You can close both software and external keystores in isolated mode, unless the system
 tablespace is encrypted.
- Creating a User-Defined TDE Master Encryption Key in Isolated Mode
 To create a user-defined TDE master encryption key, use the ADMINISTER KEY
 MANAGEMENT Statement with the SET | CREATE [ENCRYPTION] KEY clause.
- Creating a TDE Master Encryption Key for Later Use in Isolated Mode
 A keystore must be open before you can create a TDE master encryption key for use later on in isolated mode.
- Activating a TDE Master Encryption Key in Isolated Mode
 To activate a TDE master encryption key in isolated mode, you must open the keystore and use ADMINISTER KEY MANAGEMENT with the USE KEY clause.

- Rekeying the TDE Master Encryption Key in Isolated Mode
 You can use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause
 to rekey a TDE master encryption key.
- Moving a TDE Master Encryption Key into a New Keystore in Isolated Mode
 In isolated mode, you can move an existing TDE master encryption key into a new
 TDE wallet from an existing password TDE wallet.
- Creating a Custom Attribute Tag in Isolated Mode
 To create a custom attribute tag in isolated mode, you must use the SET TAG clause of the ADMINISTER KEY MANAGEMENT Statement.
- Exporting and Importing the TDE Master Encryption Key in Isolated Mode
 You can export and import the TDE master encryption key in different ways in
 isolated mode.
- Storing Oracle Database Secrets in Isolated Mode Secrets are data that support internal Oracle Database features that integrate external clients such as Oracle GoldenGate into the database.
- Storing Oracle GoldenGate Secrets in a Keystore in Isolated Mode You can store Oracle GoldenGate secrets in Transparent Data Encryption keystores.
- Migrating Keystores in Isolated Mode
 You can perform migration and reverse migration operations between TDE wallets
 and external keystores in isolated mode.
- Uniting a Pluggable Database Keystore
 Uniting a PDB keystore moves the TDE master encryption keys from the PDB keystore into the keystore of the CDB root. This enables the administrator of the keystore of the CDB root to manage the keys.
- Creating a Keystore When the PDB Is Closed
 When you create a keystore in a PDB that is closed, the new keystore is empty and the PDB is converted to isolated mode.

9.1.1 Changing the Keystore Password in Isolated Mode

You can change the password of a TDE wallet when the PDB is in isolated mode.

To change the password of an external keystore, you must use the administrative interface of the external keystore. You cannot perform this operation by using the ADMINISTER KEY MANAGEMENT statement.

- Changing the Password-Protected TDE Wallet Password in Isolated Mode
 To change the password of a password-protected TDE wallet in isolated mode,
 you must use the ADMINISTER KEY MANAGEMENT statement.
- Changing the Password of an External Keystore in Isolated Mode
 To change the password of an external keystore, you must close the external keystore and then change the password from the external keystore's management interface.

9.1.1.1 Changing the Password-Protected TDE Wallet Password in Isolated Mode

To change the password of a password-protected TDE wallet in isolated mode, you must use the ADMINISTER KEY MANAGEMENT statement.

You can change this password at any time, as per the security policies, compliance guidelines, and other security requirements of your site. As part of the command to change the password, you will be forced to specify the WITH BACKUP clause, and thus forced to make a backup of the current TDE wallet. During the password change operation, Transparent Data Encryption operations such as encryption and decryption will continue to work normally. You can change this password at any time. You may want to change this password if you think it was compromised.

- Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Change the password for the TDE wallet by using the following syntax:

```
ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD [FORCE KEYSTORE]
IDENTIFIED BY
old_password SET new_password
[WITH BACKUP [USING 'backup identifier']];
```

In this specification:

- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
 operation if the TDE wallet is closed, if an auto-login TDE wallet is configured and is
 currently open, or if a password-protected TDE wallet is configured and is currently
 closed.
- old password is the current TDE wallet password that you want to change.
- new password is the new password that you set for the TDE wallet.

The following example creates a backup of the TDE wallet and then changes the TDE wallet password:

```
ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD IDENTIFIED BY old_password SET new_password WITH BACKUP USING 'pwd_change'; keystore altered.
```

This example performs the same operation but uses the FORCE KEYSTORE clause in case the auto-login TDE wallet is in use or the password-protected TDE wallet is closed.

```
ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD FORCE KEYSTORE IDENTIFIED BY old_password SET new_password WITH BACKUP USING 'pwd_change'; keystore altered.
```

Related Topics

Performing Operations That Require a Keystore Password
 Many ADMINISTER KEY MANAGEMENT operations require access to a keystore password, for both TDE wallets and external keystores.

9.1.1.2 Changing the Password of an External Keystore in Isolated Mode

To change the password of an external keystore, you must close the external keystore and then change the password from the external keystore's management interface.

- 1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Close the external keystore.
 - For example:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY "external key manager password";
```

For an external keystore whose password is stored externally:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY EXTERNAL STORE;
```

3. Update the credentials of the external store to use

```
"new external key manager password".
```

Currently, the external store contains the old credentials, which would no longer work.

For example:

```
ADMINISTER KEY MANAGEMENT

UPDATE SECRET 'new_external_key_manager_password'

FOR CLIENT 'TDE_WALLET'

TO LOCAL AUTO LOGIN KEYSTORE '/etc/ORACLE/WALLETS/orcl/external store';
```

Open the external keystore.

For example:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "new external key manager password";
```

For an external keystore whose password is stored externally:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY EXTERNAL STORE;
```

Related Topics

Performing Operations That Require a Keystore Password Many ADMINISTER KEY MANAGEMENT operations require access to a keystore password, for both TDE wallets and external keystores.

9.1.2 Backing Up a Password-Protected TDE Wallet in Isolated Mode

The BACKUP KEYSTORE clause of the ADMINISTER KEY MANAGEMENT statement backs up a password-protected TDE wallet.

- 1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Back up the keystore by using the following syntax:

```
ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE [USING 'backup identifier']
```



```
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | TDE_wallet_password]
[TO 'TDE wallet location'];
```

In this specification:

- USING backup_identifier is an optional string that you can provide to identify the backup. Enclose this identifier in single quotation marks (' '). This identifier is appended to the named keystore file (for example, ewallet_time-stamp emp key backup.p12).
- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
 operation. You must open the TDE wallet for this operation.
- IDENTIFIED BY is required for the BACKUP KEYSTORE operation on a password-protected keystore because although the backup is simply a copy of the existing keystore, the status of the TDE master encryption key in the password-protected keystore must be set to BACKED UP and for this change the keystore password is required.
- TDE_wallet_location is the path at which the backup TDE wallet is stored. This setting is restricted to the PDB when the PDB lockdown profile

 EXTERNAL_FILE_ACCESS setting is blocked in the PDB or when the PATH_PREFIX variable was set when the PDB was created. If you do not specify the
 TDE_wallet_location, then the backup is created in the same directory as the original TDE wallet. Enclose this location in single quotation marks (' ').

The following example backs up a TDE wallet in the same location as the source TDE wallet.

```
ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE
USING 'hr.emp_keystore'
FORCE KEYSTORE
IDENTIFIED BY
'TDE_wallet_password';
keystore altered.
```

In the following version, the password for the TDE wallet is stored externally, so the EXTERNAL STORE clause is used.

```
ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE USING 'hr.emp_keystore' FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE;
```

After you run this statement, an ewallet_identifier.p12 file (for example, ewallet time-stamp hr.emp keystore.p12) appears in the TDE wallet backup location.

Related Topics

Backing Up Password-Protected TDE Wallets
 When you back up a password-protected TDE wallet, you can create a backup identifier string to describe the backup type.

9.1.3 Merging TDE Wallets in Isolated Mode

In isolated mode, you can merge TDE wallets.

- Merging One TDE Wallet into an Existing TDE Wallet in Isolated Mode
 In isolated mode, you can use the ADMINISTER KEY MANAGEMENT Statement with the
 MERGE KEYSTORE clause to merge one TDE wallet into another existing TDE wallet.
- Merging Two TDE Wallets into a Third New TDE Wallet in Isolated Mode
 In isolated mode, you can merge two TDE wallets into a third new TDE wallet, so
 that the two existing TDE wallets are not changed and the new TDE wallet
 contains the keys of both source TDE wallets.

9.1.3.1 Merging One TDE Wallet into an Existing TDE Wallet in Isolated Mode

In isolated mode, you can use the ADMINISTER KEY MANAGEMENT statement with the MERGE KEYSTORE clause to merge one TDE wallet into another existing TDE wallet.

- 1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Merge the TDE wallets by using the following syntax:

```
ADMINISTER KEY MANAGEMENT MERGE KEYSTORE 'TDE_wallet1_location'
[IDENTIFIED BY TDE_wallet1_password]
INTO EXISTING KEYSTORE 'TDE_wallet2_location'
IDENTIFIED BY TDe_wallet2_password
[WITH BACKUP [USING 'backup identifier]];
```

In this specification:

- TDE_wallet1_location is the directory location of the first TDE wallet, which will be left unchanged after the merge. Enclose this path in single quotation marks (' ').
- The IDENTIFIED BY clause is required for the first TDE wallet if it is a
 password-protected TDE wallet. TDE_wallet1_password is the password for
 the first TDE wallet.
- TDE_wallet2_location is the directory location of the second TDE wallet into which the first TDE wallet is to be merged. Enclose this path in single quotation marks (' ').
- TDE wallet2 password is the password for the second TDE wallet.

The target TDE wallet (TDE_wallet2) remains a password-protected TDE wallet after the TDE wallet merge operation.

Related Topics

About Merging TDE Wallets

You can merge any combination of TDE wallets, but the merged keystore must be password-protected. It can have a password that is different from the constituent wallets.

9.1.3.2 Merging Two TDE Wallets into a Third New TDE Wallet in Isolated Mode

In isolated mode, you can merge two TDE wallets into a third new TDE wallet, so that the two existing TDE wallets are not changed and the new TDE wallet contains the keys of both source TDE wallets.

- 1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Merge the TDE wallets by using the following syntax:

```
ADMINISTER KEY MANAGEMENT MERGE KEYSTORE 'TDE_wallet1_location'
[IDENTIFIED BY TDE_wallet1_password] AND TDE_wallet 'TDE_wallet2_location'
[IDENTIFIED BY TDE_wallet2_password]
INTO NEW KEYSTORE 'TDE_wallet3_location'
IDENTIFIED BY TDE wallet3 password;
```

In this specification:

- TDE_wallet1_location is the directory location of the first TDE wallet, which will be left unchanged after the merge. Enclose this path in single quotation marks (' ').
- The IDENTIFIED BY clause is required for the first TDE wallet if it is a password-protected TDE wallet. TDE_wallet1_password is the current password for the first TDE wallet.
- TDE_wallet2_location is the directory location of the second TDE wallet. Enclose this path in single quotation marks (' ').
- The IDENTIFIED BY clause is required for the second TDE wallet if it is a password-protected TDE wallet. TDE_wallet2_password is the current password for the second TDE wallet.
- TDE_wallet3_location specifies the directory location of the new, merged TDE wallet. Enclose this path in single quotation marks (' '). If there is already an existing TDE wallet at this location, the command exits with an error.
- TDE wallet3 password is the new password for the merged TDE wallet.

The following example merges an auto-login TDE wallet with a password-protected TDE wallet to create a merged password-protected TDE wallet at a new location:

```
ADMINISTER KEY MANAGEMENT MERGE KEYSTORE '/etc/ORACLE/KEYSTORE/DB1'
AND KEYSTORE '/etc/ORACLE/KEYSTORE/DB2'
IDENTIFIED BY existing_password_for_TDE_wallet_2
INTO NEW KEYSTORE '/etc/ORACLE/KEYSTORE/DB3'
IDENTIFIED BY new_password_for_TDE_wallet_3;
keystore altered.
```

Related Topics

About Merging TDE Wallets

You can merge any combination of TDE wallets, but the merged keystore must be password-protected. It can have a password that is different from the constituent wallets.

9.1.4 Closing Keystores in Isolated Mode

You can close both software and external keystores in isolated mode, unless the system tablespace is encrypted.

Closing a TDE Wallet in Isolated Mode
 You can close password-protected TDE wallets, auto-login TDE wallets, and local auto-login TDE wallets in isolated mode.

Closing an External Keystore in Isolated Mode
 To close an external keystore, you must use the ADMINISTER KEY MANAGEMENT statement with the SET KEYSTORE CLOSE clause.

9.1.4.1 Closing a TDE Wallet in Isolated Mode

You can close password-protected TDE wallets, auto-login TDE wallets, and local auto-login TDE wallets in isolated mode.

In the case of an auto-login TDE wallet, which opens automatically when it is accessed, you must first move it to a new location where it cannot be automatically opened, then you must manually close it. You must do this if you are changing your configuration from an auto-login TDE wallet to a password-protected TDE wallet: you change the configuration to stop using the auto-login TDE wallet (by moving the auto-login TDE wallet to another location where it cannot be automatically opened), and then closing the auto-login TDE wallet.

- 1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Close the TDE wallet by using the following syntax.

Note that the only difference between the following two ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE statements is that a password must be provided for a password-protected TDE wallet.

For a password-protected TDE wallet:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY [EXTERNAL STORE | TDE wallet password];
```

Closing a password-protected TDE wallet disables all encryption and decryption operations. Any attempt to encrypt or decrypt data or access encrypted data results in an error.

For an auto-login or local auto-login TDE wallet:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE;
```

The result of this statement will not necessarily be that the TDE wallet status will change to <code>CLOSED</code>, because unless you also moved the <code>cwallet.sso</code> file to a location that Oracle Database cannot find, then a background job or background process could automatically re-open the auto-login TDE wallet. This can cause the status to potentially always appear to be <code>OPEN</code> even after the <code>ADMINISTER</code> KEY MANAGEMENT SET KEYSTORE CLOSE statement completed successfully.

Related Topics

About Closing Keystores

After you open a keystore, it remains open until you shut down the database instance.

9.1.4.2 Closing an External Keystore in Isolated Mode

To close an external keystore, you must use the ADMINISTER KEY MANAGEMENT statement with the SET KEYSTORE CLOSE clause.

For an Oracle Key Vault keystore, you can only provide the password. No user name is allowed in the IDENTIFIED BY clause. Enclose the password in double quotation marks.

- Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Close the external keystore by using the following syntax:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE

IDENTIFIED BY [EXTERNAL STORE | "external key manager password"];
```

Closing a keystore disables all encryption and decryption operations. Any attempt to encrypt or decrypt data or access encrypted data results in an error.

Related Topics

About Closing Keystores
 After you open a keystore, it remains open until you shut down the database instance.

9.1.5 Creating a User-Defined TDE Master Encryption Key in Isolated Mode

To create a user-defined TDE master encryption key, use the ADMINISTER KEY MANAGEMENT statement with the SET | CREATE [ENCRYPTION] KEY clause.

- Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Create the user-defined TDE master encryption key by using the following syntax:

```
ADMINISTER KEY MANAGEMENT SET | CREATE [ENCRYPTION] KEY 'mkid:mk | mk'

[USING ALGORITHM 'algorithm']

[FORCE KEYSTORE]

IDENTIFIED BY [EXTERNAL STORE | keystore_password]

[WITH BACKUP [USING 'backup_identifier']];
```

In this specification:

- SET | CREATE : Enter SET if you want to create the master and activate the TDE
 master encryption key now, or enter CREATE if you want to create the key for later use,
 without activating it yet.
- mkid and mk:
 - mkid, the TDE master encryption key ID, is a 16-byte hex-encoded value that you can specify or have Oracle Database generate.
 - mk, the TDE master encryption key, is a hex-encoded value that you can specify or have Oracle Database generate, either 32 bytes (for the for AES256, ARIA256, and GOST256 algorithms) or 16 bytes (for the SEED128 algorithm).

Note:

Starting with Oracle Database 23ai, the Transparent Data Encryption (TDE) decryption libraries for the GOST and SEED algorithms are deprecated, and encryption to GOST and SEED are desupported. Starting with Oracle Database 23ai, the Transparent Data Encryption (TDE) encryption libraries for the GOST and SEED algorithms are desupported and removed. The GOST and SEED decryption libraries are deprecated. Both are removed on HP Itanium platforms.

GOST 28147-89 has been deprecated by the Russian government, and SEED has been deprecated by the South Korean government. If you need South Korean government-approved TDE cryptography, then use ARIA instead. If you are using GOST 28147-89, then you must decrypt and encrypt with another supported TDE algorithm. The decryption algorithms for GOST 28147-89 and SEED are included with Oracle Database 23ai, but are deprecated, and the GOST encryption algorithm is desupported with Oracle Database 23ai. If you are using GOST or SEED for TDE encryption, then Oracle recommends that you decrypt and encrypt with another algorithm before upgrading to Oracle Database 23ai. However, with the exception of the HP Itanium platform, the GOST and SEED decryption libraries are available with Oracle Database 23ai, so you can also decrypt after upgrading.

If you omit the $mkid:mk \mid mkid$ clause but include the mk value, then Oracle Database generates the mkid for the mk.

If you omit the entire mkid:mk|mkid clause, then Oracle Database generates these values for you.

- USING ALGORITHM: Specify one of the following supported algorithms:
 - AES256
 - ARIA256
 - SEED128 (deprecated)
 - GOST256 (deprecated)

If you omit the algorithm, then the default, AES256, is used.

• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this operation. You must open the TDE wallet for this operation.

The following example includes a user-created TDE master encryption key but no TDE master encryption key ID, so that the TDE master encryption key ID is generated:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY
'3D432109DF88967A541967062A6F4E460E892318E307F017BA048707B402493C'
USING ALGORITHM 'ARIA256'
FORCE KEYSTORE
IDENTIFIED BY keystore password WITH BACKUP;

The next example creates user-defined keys for both the master encryption ID and the TDE master encryption key. It omits the algorithm specification, so the default algorithm AES256 is used.

```
ADMINISTER KEY MANAGEMENT CREATE ENCRYPTION KEY '10203040506070801112131415161718:3D432109DF88967A541967062A6F4E460E892318E307F017B A048707B402493C' IDENTIFIED BY keystore password WITH BACKUP;
```

Related Topics

- About User-Defined TDE Master Encryption Keys

 A TDE master encryption key that is outside the database has its own user-generated ID, which tracks the use of the TDE master encryption key.
- Supported Encryption and Integrity Algorithms
 Oracle supports the AES, ARIA and DES algorithms.

9.1.6 Creating a TDE Master Encryption Key for Later Use in Isolated Mode

A keystore must be open before you can create a TDE master encryption key for use later on in isolated mode.

- 1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT OR SYSKM privilege.
- 2. Create the TDE master encryption key by using the following syntax:

```
ADMINISTER KEY MANAGEMENT CREATE KEY [USING TAG 'tag']
[FORCE KEYSTORE]

IDENTIFIED BY EXTERNAL STORE | keystore_password
WITH BACKUP [USING 'backup identifier'];
```

In this specification:

- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this operation. You must open the TDE wallet for this operation.
- IDENTIFIED BY is required for the BACKUP KEYSTORE operation on a password-protected keystore because although the backup is simply a copy of the existing keystore, the status of the TDE master encryption key in the password-protected keystore must be set to BACKED UP and for this change the keystore password is required.
- keystore_location is the path at which the backup keystore is stored. This setting is restricted to the PDB when the PDB lockdown profile EXTERNAL_FILE_ACCESS setting is blocked in the PDB or when the PATH_PREFIX variable was not set when the PDB was created. If you do not specify the keystore_location, then the backup is created in the same directory as the original keystore. Enclose this location in single quotation marks (' ').

For example:

```
ADMINISTER KEY MANAGEMENT CREATE KEY
FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH BACKUP;
```

3. If necessary, activate the TDE master encryption key.

a. Find the key ID.

b. Use this key ID to activate the key.

```
ADMINISTER KEY MANAGEMENT USE KEY
'AWSHWVYC2U+Nv3RVphn/yAIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
USING TAG 'quarter:second;description:Activate Key on standby'
IDENTIFIED BY password
WITH BACKUP;
```

Related Topics

About Creating a TDE Master Encryption Key for Later Use
 The CREATE KEY Clause of the ADMINISTER KEY MANAGEMENT statement can create
 a TDE master encryption key to be activated at a later date.

9.1.7 Activating a TDE Master Encryption Key in Isolated Mode

To activate a TDE master encryption key in isolated mode, you must open the keystore and use <code>ADMINISTER KEY MANAGEMENT</code> with the <code>USE KEY clause</code>.

- 1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Query the KEY ID column of the V\$ENCRYPTION KEYS view to find the key identifier.

For example:

Use this key identifier to activate the TDE master encryption key by using the following syntax:

```
ADMINISTER KEY MANAGEMENT USE KEY 'key_identifier_from_V$ENCRYPTION_KEYS' [USING TAG 'tag'] [FORCE KEYSTORE] IDENTIFIED BY [EXTERNAL STORE | keystore_password] [WITH BACKUP [USING 'backup identifier']];
```

In this specification:

FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

For example:

Related Topics

About Activating TDE Master Encryption Keys
 You can activate a previously created or imported TDE master encryption key by using
 the USE KEY clause of ADMINISTER KEY MANAGEMENT.

9.1.8 Rekeying the TDE Master Encryption Key in Isolated Mode

You can use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause to rekey a TDE master encryption key.

- 1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. If you are rekeying the TDE master encryption key for a keystore that has auto login enabled, then ensure that both the auto login keystore, identified by the .sso file, and the encryption keystore, identified by the .p12 file, are present.

You can find the location of these files by querying the WRL_PARAMETER column of the V\$ENCRYPTION_WALLET view. To find the WRL_PARAMETER values for all of the database instances, query the GV\$ENCRYPTION WALLET view.

3. Rekey the TDE master encryption key by using the following syntax:

```
ADMINISTER KEY MANAGEMENT SET [ENCRYPTION] KEY
[FORCE KEYSTORE]
[USING TAG 'tag_name']
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING 'backup identifier']];
```

In this specification:

- tag is the associated attributes and information that you define. Enclose this setting
 in single quotation marks (' ').
- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this operation. You must open the TDE wallet for this operation.
- IDENTIFIED BY can be one of the following settings:
 - EXTERNAL STORE uses the keystore password stored in the external store to perform the keystore operation.
 - keystore password is the password that was created for this keystore.

For example:

```
ADMINISTER KEY MANAGEMENT SET KEY FORCE KEYSTORE IDENTIFIED BY keystore_password WITH BACKUP USING 'emp_key_backup'; keystore altered.
```

Related Topics

About Rekeying the TDE Master Encryption Key
 Oracle Database uses a unified TDE Master Encryption Key for both TDE column
 encryption and TDE tablespace encryption.

9.1.9 Moving a TDE Master Encryption Key into a New Keystore in Isolated Mode

In isolated mode, you can move an existing TDE master encryption key into a new TDE wallet from an existing password TDE wallet.

This feature enables you to move a subset, or all, of a TDE wallet's keys into a new TDE wallet. After you move the key or keys to the new TDE wallet and then back up the old TDE wallet, optionally you then can delete this old TDE wallet.

- Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Query the CREATION_TIME and KEY_ID columns of the V\$ENCRYPTION_KEYS view to find the key identifier of the key that you want to move.

For example:

3. Move the key into a new TDE wallet by using the following syntax:

```
ADMINISTER KEY MANAGEMENT

MOVE [ENCRYPTION] KEYS

TO NEW KEYSTORE 'TDE_wallet_location1'

IDENTIFIED BY TDE_wallet1_password

FROM [FORCE] KEYSTORE

IDENTIFIED BY TDE_wallet2_password

[WITH IDENTIFIER IN

{ 'key_identifier' [, 'key_identifier' ]... | ( subquery ) }]

[WITH BACKUP [USING 'backup_identifier'] ];
```

In this specification:

- TDE_wallet_location1 is the path to the wallet directory that will store the
 new TDE wallet .p12 file. By default, this directory is in \$ORACLE_BASE/admin/
 db unique name/wallet.
- TDE_wallet1_password is the password for the TDE wallet from which the new TDE wallet is moved.
- FORCE temporarily opens the TDE wallet for this operation.
- TDE_wallet2_password is the password for the TDE wallet from which the key is moving.
- subquery can be used to find the exact key identifier that you want.
- backup_identifier is an optional description of the backup. Enclose backup identifier in single quotation marks (' ').

For example:


```
ADMINISTER KEY MANAGEMENT MOVE KEYS
TO NEW KEYSTORE '$ORACLE_BASE/admin/orcl/wallet'
IDENTIFIED BY TDE_wallet1_password
FROM FORCE KEYSTORE
IDENTIFIED BY TDE_wallet2_password
WITH IDENTIFIER IN
(SELECT KEY_ID FROM V$ENCRYPTION_KEYS WHERE ROWNUM < 2)
WITH BACKUP;
```

After the keys are moved to the new TDE wallet, they no longer exist in the old TDE wallet.

- 4. To delete the old TDE wallet, go to the wallet directory and do the following:
 - **a.** Back up the .p12 file containing the TDE wallet that you want to delete.
 - b. Manually delete the .p12 file containing the TDE wallet.

To find the location of the TDE wallet, open the TDE wallet, and then query the $WRL_PARAMETER$ column of the $V\$ENCRYPTION_WALLET$ view.

Related Topics

- About Moving TDE Master Encryption Keys into a New Keystore
 You can move an unused (and safely archived) TDE master encryption key into a new
 keystore.
- Dangers of Deleting TDE Wallets
 Oracle strongly recommends that you do not delete TDE wallets.

9.1.10 Creating a Custom Attribute Tag in Isolated Mode

To create a custom attribute tag in isolated mode, you must use the SET TAG clause of the ADMINISTER KEY MANAGEMENT statement.

- 1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. If necessary, query the TAG column of the V\$ENCRYPTION_KEY dynamic view to find a listing of existing tags for the TDE master encryption keys.

When you create a new tag for a TDE master encryption key, it overwrites the existing tag for that TDE master encryption key.

3. Create the custom attribute tag by using the following syntax:

```
ADMINISTER KEY MANAGEMENT SET TAG 'tag'
FOR 'master_key_identifier'
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING 'backup_identifier']];
```

In this specification:

- tag is the associated attributes or information that you define. Enclose this information in single quotation marks (' ').
- master_key_identifier identifies the TDE master encryption key for which the tag
 is set. To find a list of TDE master encryption key identifiers, query the KEY_ID column
 of the V\$ENCRYPTION_KEYS dynamic view.

- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this operation. You must open the TDE wallet for this operation.
- IDENTIFIED BY can be one of the following settings:
 - EXTERNAL STORE uses the keystore password stored in the external store to perform the keystore operation.
 - keystore password is the password that was created for this keystore.
 - backup_identifier defines the tag values. Enclose this setting in single quotation marks (' ') and separate each value with a colon.

For example, to create a tag that uses two values, one to capture a specific session ID and the second to capture a specific terminal ID:

```
ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY USING TAG 'sessionid=3205062574:terminal=xcvt' IDENTIFIED BY keystore_password WITH BACKUP; keystore altered.
```

Both the session ID (3205062574) and terminal ID (xcvt) can derive their values by using either the SYS_CONTEXT function with the USERENV namespace, or by using the USERENV function.

Related Topics

About Creating Custom Attribute Tags
 Attribute tags enable you to monitor specific activities users perform, such as accessing a particular terminal ID.

9.1.11 Exporting and Importing the TDE Master Encryption Key in Isolated Mode

You can export and import the TDE master encryption key in different ways in isolated mode.

- Exporting a TDE Master Encryption Key in Isolated Mode
 In isolated mode, you can use the ADMINISTER KEY MANAGEMENT statement to export a TDE master encryption key.
- Importing a TDE Master Encryption Key in Isolated Mode
 The ADMINISTER KEY MANAGEMENT statement with the IMPORT [ENCRYPTION] KEYS
 WITH SECRET clause can import a TDE master encryption key.

9.1.11.1 Exporting a TDE Master Encryption Key in Isolated Mode

In isolated mode, you can use the ADMINISTER KEY MANAGEMENT statement to export a TDE master encryption key.

- 1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Export the TDE master encryption keystore by using the following syntax:

```
ADMINISTER KEY MANAGEMENT EXPORT [ENCRYPTION] KEYS WITH SECRET "export_secret"
```



```
TO 'file_path'
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH IDENTIFIER IN 'key id1', 'key id2', 'key idn' | (SQL query)];
```

In this specification:

- export_secret is a password that you can specify to encrypt the export the file that contains the exported keys. Enclose this secret in double quotation marks (" "), or you can omit the quotation marks if the secret has no spaces.
- file_path is the complete path and name of the file to which the keys must be
 exported. Enclose this path in single quotation marks (' '). You can export to regular
 file systems only.
- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this operation. You must open the TDE wallet for this operation.
- key_id1, key_id2, key_idn is a string of one or more TDE master encryption key identifiers for the TDE master encryption key being exported. Separate each key identifier with a comma and enclose each of these key identifiers in single quotation marks (' '). To find TDE master encryption key identifiers, query the KEY_ID column of the V\$ENCRYPTION KEYS dynamic view.
- SQL_query is a query that fetches a list of the TDE master encryption key identifiers.
 It should return only one column that contains the TDE master encryption key identifiers. This query is run with current user rights.

Related Topics

Exporting and Importing the TDE Master Encryption Key
 You can export and import the TDE master encryption key in different ways.

9.1.11.2 Importing a TDE Master Encryption Key in Isolated Mode

The ADMINISTER KEY MANAGEMENT statement with the IMPORT [ENCRYPTION] KEYS WITH SECRET clause can import a TDE master encryption key.

- 1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT Or SYSKM privilege.
- 2. Import the TDE master encryption keystore by using the following syntax:

```
ADMINISTER KEY MANAGEMENT IMPORT [ENCRYPTION] KEYS WITH SECRET "import_secret"

FROM 'file_name'
[FORCE KEYSTORE]

IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING 'backup_identifier']];
```

In this specification:

- import_secret is the same password that was used to encrypt the keys during the export operation. Enclose this secret in double quotation marks (" "), or you can omit the quotation marks if the secret has no spaces.
- file_name is the complete path and name of the file from which the keys need to be imported. Enclose this setting in single quotation marks (' ').
- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this operation. You must open the TDE wallet for this operation.

Related Topics

Exporting and Importing the TDE Master Encryption Key
 You can export and import the TDE master encryption key in different ways.

9.1.12 Storing Oracle Database Secrets in Isolated Mode

Secrets are data that support internal Oracle Database features that integrate external clients such as Oracle GoldenGate into the database.

- About Storing Oracle Database Secrets in a Keystore in Isolated Mode
 Keystores (both TDE wallets and external keystores) can store secrets that
 support internal Oracle Database features and integrate external clients such as
 Oracle GoldenGate.
- Storing Oracle Database Secrets in a TDE Wallet in Isolated Mode
 The ADMINISTER KEY MANAGEMENT ADD SECRET | UPDATE SECRET | DELETE SECRET
 statements can add secrets, update secrets, and delete secrets in a TDE wallet.
- Example: Adding an Oracle Key Vault Password to a TDE Wallet
 The ADMINISTER KEY MANAGEMENT ADD SECRET statement can add an Oracle Key
 Vault password to a TDE wallet.
- Example: Changing an Oracle Key Vault Password Stored as a Secret in a TDE Wallet
 - The ADMINISTER KEY MANAGEMENT UPDATE SECRET statement can change an Oracle Key Vault password that is stored as a secret in a TDE wallet.
- Example: Deleting an Oracle Key Vault Password Stored as a Secret in a TDE Wallet
 - The administer key management delete secret statement can delete Oracle Key Vault passwords that are stored as secrets in a TDE wallet.
- Storing Oracle Database Secrets in an External Keystore in Isolated Mode
 The ADMINISTER KEY MANAGEMENT ADD SECRET | UPDATE SECRET | DELETE SECRET
 statements can add secrets, update secrets, and delete secrets in a keystore.
- Example: Adding an Oracle Database Secret to an External Keystore
 The ADMINISTER KEY MANAGEMENT ADD SECRET statement can add an Oracle
 Database secret to an external keystore.
- Example: Changing an Oracle Database Secret in an External Keystore
 The ADMINISTER KEY MANAGEMENT MANAGEMENT UPDATE SECRET statement can
 change an Oracle Database secret in an external keystore.
- Example: Deleting an Oracle Database Secret in an External Keystore

 The ADMINISTER KEY MANAGEMENT DELETE SECRET FOR CLIENT statement can
 delete an Oracle Database secret that is in an external keystore.

9.1.12.1 About Storing Oracle Database Secrets in a Keystore in Isolated Mode

Keystores (both TDE wallets and external keystores) can store secrets that support internal Oracle Database features and integrate external clients such as Oracle GoldenGate.

The secret key must be a string adhering to Oracle identifier rules. You can add, update, or delete a client secret in an existing keystore. The Oracle GoldenGate Extract process must have data encryption keys to decrypt the data that is in data files and in REDO or UNDO logs. Keys are encrypted with shared secrets when you share the

keys between an Oracle database and an Oracle GoldenGate client. The TDE wallet stores the shared secrets.

Depending on your site's requirements, you may require automated open keystore operations even when an external keystore is configured. For this reason, the external key manager password can be stored in an auto-login TDE wallet, which enables the auto-login capability for the external key manager. The Oracle Database side can also store the credentials for the database to log in to an external storage server in the TDE wallet.

You can store Oracle Database secrets in both TDE wallets and external keystores:

- **TDE wallets:** You can store secrets in password-based, auto-login, and local auto-login TDE wallets. If you want to store secrets in an auto-login (or auto-login local) TDE wallet, then note the following:
 - If the auto-login TDE wallet is in the same location as its corresponding passwordbased TDE wallet, then the secrets are added automatically.
 - If the auto-login TDE wallet is in a different location from its corresponding password-based TDE wallet, then you must create the auto-login TDE wallet again from the password-based TDE wallet, and keep the two walltets in synchronization.
- External keystores: You can store secrets in standard external key managers.

Related Topics

Configuring Auto-Open Connections into External Key Managers
 An external key manager can be configured to use the auto-login capability.

9.1.12.2 Storing Oracle Database Secrets in a TDE Wallet in Isolated Mode

The Administer key management and secret | update secret | delete secret statements can add secrets, update secrets, and delete secrets in a TDE wallet.

- 1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT Or SYSKM privilege.
- 2. Add, update, or delete a database secret in a TDE wallet by using the following syntax:
 - To add a secret:

```
ADMINISTER KEY MANAGEMENT

ADD SECRET 'secret' FOR CLIENT 'client_identifier'

[USING TAG 'tag']

[TO [[LOCAL] AUTO_LOGIN] KEYSTORE TDE_wallet_location

[WITH BACKUP [USING backup_id]]

| [FORCE KEYSTORE]

IDENTIFIED BY [EXTERNAL STORE | TDE_wallet_password]

[WITH BACKUP [USING backup id]]];
```

To update a secret:

```
ADMINISTER KEY MANAGEMENT

UPDATE SECRET 'secret' FOR CLIENT 'client_identifier'

[USING TAG 'tag']

[TO [[LOCAL] AUTO_LOGIN] KEYSTORE TDE_wallet_location

[WITH BACKUP [USING backup_id]]

| [FORCE KEYSTORE]

IDENTIFIED BY [EXTERNAL STORE | TDE_wallet_password]

[WITH BACKUP [USING backup id]]];
```

To delete a secret:


```
ADMINISTER KEY MANAGEMENT

DELETE SECRET FOR CLIENT 'client_identifier'

[FROM [[LOCAL] AUTO_LOGIN] KEYSTORE TDE_wallet_location

[FORCE KEYSTORE]

IDENTIFIED BY [EXTERNAL STORE | TDE_wallet_password]

[WITH BACKUP [USING backup id]]];
```

The specification is as follows:

- secret is the client secret key to be stored, updated, or deleted. To find
 information about existing secrets and their client identifiers, query the
 V\$CLIENT SECRETS dynamic view.
- client identifier is an alphanumeric string used to identify the secret key.
- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this operation. You must open the TDE wallet for this operation.

Related Topics

Storing Oracle Database Secrets in Isolated Mode
 Secrets are data that support internal Oracle Database features that integrate
 external clients such as Oracle GoldenGate into the database.

9.1.12.3 Example: Adding an Oracle Key Vault Password to a TDE Wallet

The ADMINISTER KEY MANAGEMENT ADD SECRET statement can add an Oracle Key Vault password to a TDE wallet.

Example 9-1 shows how to add an Oracle Key Vault password as a secret into an existing TDE wallet (for example, after migrating to Oracle Key Vault, the Oracle Key Vault password can be added to the old TDE wallet to set up an auto-open connection into Oracle Key Vault.

Example 9-1 Adding an Oracle Database Secret to a TDE wallet

```
ADMINISTER KEY MANAGEMENT
ADD SECRET 'external_key_manager_password' FOR CLIENT 'OKV_PASSWORD'
IDENTIFIED BY TDE wallet password WITH BACKUP;
```

Before migrating from a TDE wallet to Oracle Key Vault, you can upload the TDE wallet into the virtual wallet of that endpoint in Oracle Key Vault. After migrating, you now can delete the old TDE wallet, because its key is in Oracle Key Vault. In order to configure auto-open Oracle Key Vault without a wallet being already present, run the following statement:

```
ADMINISTER KEY MANAGEMENT ADD SECRET 'external_keystore_password'
FOR CLIENT 'OKV PASSWORD' INTO [LOCAL] AUTO LOGIN KEYSTORE 'WALLET ROOT/tde';
```

Note that the setting <code>TDE_CONFIGURATION='KEYSTORE_CONFIGURATION=OKV'</code> is for a password-protected connection into Oracle Key Vault. After the Oracle Key Vault password has been inserted into an existing or newly created wallet, change the <code>TDE_CONFIGURATION setting to 'KEYSTORE CONFIGURATION=OKV|FILE'</code>.

9.1.12.4 Example: Changing an Oracle Key Vault Password Stored as a Secret in a TDE Wallet

The ADMINISTER KEY MANAGEMENT UPDATE SECRET statement can change an Oracle Key Vault password that is stored as a secret in a TDE wallet.

Example 9-2 shows how to change an Oracle Key Vault password that is stored as a secret in a TDE wallet.

Example 9-2 Changing an Oracle Key Vault Password Secret to a TDE Wallet

```
ADMINISTER KEY MANAGEMENT
UPDATE SECRET admin_password FOR CLIENT 'admin@myhost'
USING TAG 'new_host_credentials' FORCE KEYSTORE
IDENTIFIED BY TDE wallet password;
```

In this version, the password for the keystore is in an external store:

```
DMINISTER KEY MANAGEMENT

UPDATE SECRET admin_password FOR CLIENT 'admin@myhost'

USING TAG 'new_host_credentials' FORCE KEYSTORE

IDENTIFIED BY EXTERNAL STORE;
```

9.1.12.5 Example: Deleting an Oracle Key Vault Password Stored as a Secret in a TDE Wallet

The ADMINISTER KEY MANAGEMENT DELETE SECRET statement can delete Oracle Key Vault passwords that are stored as secrets in a TDE wallet.

Example 9-3 shows how to delete an Oracle Key Vault password that is stored as a secret in the TDE wallet.

Example 9-3 Deleting an Oracle Key Vault Password Secret in a TDE Wallet

```
ADMINISTER KEY MANAGEMENT
DELETE SECRET FOR CLIENT 'OKV_PASSWORD'
FORCE KEYSTORE
IDENTIFIED BY TDE wallet password WITH BACKUP;
```

In this version, the password for the TDE wallet is in an external store:

```
ADMINISTER KEY MANAGEMENT
DELETE SECRET FOR CLIENT 'OKV_PASSWORD'
FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE WITH BACKUP;
```

9.1.12.6 Storing Oracle Database Secrets in an External Keystore in Isolated Mode

The ADMINISTER KEY MANAGEMENT ADD SECRET | UPDATE SECRET | DELETE SECRET statements can add secrets, update secrets, and delete secrets in a keystore.

- Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- Add, update, or delete a database secret in an external keystore by using the following syntax:
 - To add a secret:

```
ADMINISTER KEY MANAGEMENT

ADD SECRET 'secret' FOR CLIENT 'client_identifier'

[USING TAG 'tag']

[TO [[LOCAL] AUTO_LOGIN] KEYSTORE keystore_location

[FORCE KEYSTORE]

IDENTIFIED BY "external_key_manager_password"]

[WITH BACKUP [USING backup id]];
```


To update a secret:

```
ADMINISTER KEY MANAGEMENT

UPDATE SECRET 'secret' FOR CLIENT 'client_identifier'

[USING TAG 'tag']

[TO [[LOCAL] AUTO_LOGIN] KEYSTORE keystore_location

[FORCE KEYSTORE]

IDENTIFIED BY "external_key_manager_password"

[WITH BACKUP [USING backup id]];
```

To delete a secret:

```
ADMINISTER KEY MANAGEMENT

DELETE SECRET FOR CLIENT 'client_identifier'

[FROM [[LOCAL] AUTO_LOGIN] KEYSTORE keystore_location

[FORCE KEYSTORE]

IDENTIFIED BY "eexternal_key_manager_password";
```

The specification is as follows:

- secret is the client secret key to be stored, updated, or deleted. To find information about existing secrets and their client identifiers, query the V\$CLIENT SECRETS dynamic view.
- client identifier is an alphanumeric string used to identify the secret key.
- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this operation. You must open the TDE wallet for this operation.
- external_key_manager_password is for an external keystore manager, which
 can be Oracle Key Vault or OCI Vault Key Management. Enclose this
 password in double quotation marks. For Oracle Key Vault, enter the
 password that was given during the Oracle Key Vault client installation. If at
 that time no password was given, then the password in the ADMINISTER KEY
 MANAGEMENT statement becomes NULL.

Related Topics

Storing Oracle Database Secrets in Isolated Mode
 Secrets are data that support internal Oracle Database features that integrate
 external clients such as Oracle GoldenGate into the database.

9.1.12.7 Example: Adding an Oracle Database Secret to an External Keystore

The ADMINISTER KEY MANAGEMENT ADD SECRET statement can add an Oracle Database secret to an external keystore.

Example 9-4 shows how to add a password for a user to an external keystore.

Example 9-4 Adding an Oracle Database Secret to an External Keystore

```
ADMINISTER KEY MANAGEMENT ADD SECRET 'password'
FOR CLIENT 'admin@myhost' USING TAG 'myhost admin credentials'
IDENTIFIED BY "external_key_manager_password";
```

In this version, the keystore password is in an external store, so the EXTERNAL STORE setting is used for IDENTIFIED BY:

```
ADMINISTER KEY MANAGEMENT ADD SECRET 'password'
FOR CLIENT 'admin@myhost' USING TAG 'myhost admin credentials'
IDENTIFIED BY EXTERNAL STORE;
```


9.1.12.8 Example: Changing an Oracle Database Secret in an External Keystore

The ADMINISTER KEY MANAGEMENT MANAGEMENT UPDATE SECRET statement can change an Oracle Database secret in an external keystore.

Example 9-5 shows how to change a password that is stored as a secret in an external keystore.

Example 9-5 Changing an Oracle Database Secret in an External Keystore

```
ADMINISTER KEY MANAGEMENT MANAGEMENT UPDATE SECRET 'password2' FOR CLIENT 'admin@myhost' USING TAG 'New host credentials' IDENTIFIED BY "external key manager password";
```

In this version, the password for the keystore is in an external store:

```
ADMINISTER KEY MANAGEMENT MANAGEMENT UPDATE SECRET 'password2' FOR CLIENT 'admin@myhost' USING TAG 'New host credentials' IDENTIFIED BY EXTERNAL STORE;
```

9.1.12.9 Example: Deleting an Oracle Database Secret in an External Keystore

The administer key management delete secret for client statement can delete an Oracle Database secret that is in an external keystore.

Example 9-6 shows how to delete an external key manager password that is stored as a secret in the external keystore.

Example 9-6 Deleting an Oracle Database Secret in an External Keystore

```
ADMINISTER KEY MANAGEMENT DELETE SECRET FOR CLIENT 'admin@myhost' IDENTIFIED BY "external key manager password";
```

In this version, the password for the keystore is in an external store:

```
ADMINISTER KEY MANAGEMENT DELETE SECRET FOR CLIENT 'admin@myhost' IDENTIFIED BY EXTERNAL STORE;
```

9.1.13 Storing Oracle GoldenGate Secrets in a Keystore in Isolated Mode

You can store Oracle GoldenGate secrets in Transparent Data Encryption keystores.

- About Storing Oracle GoldenGate Secrets in Keystores in Isolated Mode
 You can use a keystore (TDE wallet or external keystore) to store secret keys for tools
 and external clients such as Oracle GoldenGate.
- Oracle GoldenGate Extract Classic Capture Mode TDE Requirements
 Ensure that you meet the requirements for Oracle GoldenGate Extract to support
 Transparent Data Encryption capture.
- Configuring Keystore Support for Oracle GoldenGate
 You can configure Transparent Data Encryption keystore support for Oracle GoldenGate
 by using a shared secret for the keystore.

9.1.13.1 About Storing Oracle GoldenGate Secrets in Keystores in Isolated Mode

You can use a keystore (TDE wallet or external keystore) to store secret keys for tools and external clients such as Oracle GoldenGate.

The secret key must be a string adhering to Oracle identifier rules. You can add, update, or delete a client secret in an existing keystore. This section describes how to capture Transparent Data Encryption encrypted data in the Oracle GoldenGate Extract (Extract) process using classic capture mode.

TDE support when Extract is in classic capture mode requires the exchange of the following keys:

- TDE support for Oracle GoldenGate in the classic capture mode of the Extract
 process requires that an Oracle database and the Extract process share the secret
 to encrypt sensitive information being exchanged. The shared secret is stored
 securely in the Oracle database and Oracle GoldenGate domains. The shared
 secret is stored in the TDE wallet or the external keystore as the database secret.
- The decryption key is a password known as the shared secret that is stored securely in the Oracle database and Oracle GoldenGate domains. Only a party that has possession of the shared secret can decrypt the table and redo log keys.

After you configure the shared secret, Oracle GoldenGate Extract uses the shared secret to decrypt the data. Oracle GoldenGate Extract does not handle the TDE master encryption key itself, nor is it aware of the keystore password. The TDE master encryption key and password remain within the Oracle database configuration.

Oracle GoldenGate Extract only writes the decrypted data to the Oracle GoldenGate trail file, which Oracle GoldenGate persists during transit. You can protect this file using your site's operating system standard security protocols, as well as the Oracle GoldenGate AES encryption options. Oracle GoldenGate does not write the encrypted data to a discard file (specified with the DISCARDFILE parameter). The word ENCRYPTED will be written to any discard file that is in use.

Oracle GoldenGate does require that the keystore be open when processing encrypted data. There is no performance effect of Oracle GoldenGate feature on the TDE operations.

9.1.13.2 Oracle GoldenGate Extract Classic Capture Mode TDE Requirements

Ensure that you meet the requirements for Oracle GoldenGate Extract to support Transparent Data Encryption capture.

The requirements are as follows:

- To maintain high security standards, ensure that the Oracle GoldenGate Extract process runs as part of the Oracle user (the user that runs the Oracle database).
 That way, the keys are protected in memory by the same privileges as the Oracle user.
- Run the Oracle GoldenGate Extract process on the same computer as the Oracle database installation.

9.1.13.3 Configuring Keystore Support for Oracle GoldenGate

You can configure Transparent Data Encryption keystore support for Oracle GoldenGate by using a shared secret for the keystore.

• Step 1: Decide on a Shared Secret for the Keystore A shared secret for a keystore is a password.

- Step 2: Configure Oracle Database for TDE Support for Oracle GoldenGate
 The DBMS_INTERNAL_CLKM PL/SQL package enables you to configure TDE support for Oracle GoldenGate.
- Step 3: Store the TDE GoldenGate Shared Secret in the Keystore
 The ADMINISTER KEY MANAGEMENT statement can store a TDE GoldenGate shared secret in a keystore.
- Step 4: Set the TDE Oracle GoldenGate Shared Secret in the Extract Process
 The GoldenGate Software Command Interface (GGSCI) utility sets the TDE Oracle
 GoldenGate shared secret in the extract process.

9.1.13.3.1 Step 1: Decide on a Shared Secret for the Keystore

A shared secret for a keystore is a password.

Decide on a shared secret that meets or exceeds Oracle Database password standards.

Do not share this password with any user other than trusted administrators who are responsible for configuring Transparent Data Encryption to work with Oracle GoldenGate Extract.

Related Topics

Oracle Database Security Guide

9.1.13.3.2 Step 2: Configure Oracle Database for TDE Support for Oracle GoldenGate

The DBMS_INTERNAL_CLKM PL/SQL package enables you to configure TDE support for Oracle GoldenGate.

- 1. Connect to the united mode CDB root or isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Load the Oracle Database-supplied DBMS INTERNAL CLKM PL/SQL package.

For example:

@?/app/oracle/product/20.1/rdbms/admin/prvtclkm.plb

The prvtclkm.plb file also enables Oracle GoldenGate to extract encrypted data from an Oracle database.

3. Grant the EXECUTE privilege on the DBMS_INTERNAL_CLKM PL/SQL package to the Oracle GoldenGate Extract database user.

For example:

```
GRANT EXECUTE ON DBMS_INTERNAL_CLKM TO psmith;
```

This procedure enables the Oracle database and Oracle GoldenGate Extract to exchange information.

9.1.13.3.3 Step 3: Store the TDE GoldenGate Shared Secret in the Keystore

The ADMINISTER KEY MANAGEMENT statement can store a TDE GoldenGate shared secret in a keystore.

Before you begin this procedure, ensure that you have configured the TDE software or external keystore.

Administering Keystores and TDE Master Encryption Keys in Isolated Mode

- 1. Connect to the united mode CDB root or isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Set the Oracle GoldenGate-TDE key in the keystore by using the following syntax.

```
ADMINISTER KEY MANAGEMENT ADD|UPDATE|DELETE SECRET 'secret'
FOR CLIENT 'secret_identifier' [USING TAG 'tag']
IDENTIFIED BY keystore_password [WITH BACKUP [USING 'backup_identifier']];
```

In this specification:

- secret is the client secret key to be stored, updated, or deleted. Enclose this setting in single quotation marks (' ').
- secret_identifier is an alphanumeric string used to identify the secret key. secret_identifier does not have a default value. Enclose this setting in single quotation marks (' ').
- tag is an optional, user-defined description for the secret key to be stored. tag
 can be used with the ADD and UPDATE operations. Enclose this setting in single
 quotation marks (' '). This tag appears in the SECRET_TAG column of the
 V\$CLIENT SECRETS view.
- keystore password is the password for the keystore that is configured.
- WITH BACKUP is required in case the keystore was not backed up before the
 ADD, UPDATE or DELETE operation. backup_identifier is an optional userdefined description for the backup. Enclose backup_identifier in single
 quotation marks (' ').

The following example adds a secret key to the keystore and creates a backup in the same directory as the keystore:

```
ADMINISTER KEY MANAGEMENT ADD SECRET 'some_secret'
FOR CLIENT 'ORACLE_GG' USING TAG 'GoldenGate Secret'
IDENTIFIED BY password WITH BACKUP USING 'GG backup';
```

3. Verify the entry that you just created.

For example:

```
SELECT CLIENT, SECRET_TAG FROM V$CLIENT_SECRETS WHERE CLIENT = 'ORACLEGG';

CLIENT SECRET_TAG

ORACLEGG some_secret
```

4. Switch the log files.

```
CONNECT / AS SYSDBA

ALTER SYSTEM SWITCH LOGFILE;
```

9.1.13.3.4 Step 4: Set the TDE Oracle GoldenGate Shared Secret in the Extract Process

The GoldenGate Software Command Interface (GGSCI) utility sets the TDE Oracle GoldenGate shared secret in the extract process.

Start the GGSCI utility.

ggsci

2. In the GGSCI utility, run the ENCRYPT PASSWORD command to encrypt the shared secret within the Oracle GoldenGate Extract parameter file.

ENCRYPT PASSWORD shared secret algorithm ENCRYPTKEY keyname

In this specification:

- shared_secret is the clear-text shared secret that you created when you decided on a shared secret for the keystore. This setting is case sensitive.
- algorithm is AES256.
- *keyname* is the logical name of the encryption key in the ENCKEYS lookup file. Oracle GoldenGate uses this name to look up the actual key in the ENCKEYS file.

For example:

ENCRYPT PASSWORD password AES256 ENCRYPTKEY mykey1

3. In the Oracle GoldenGate Extract parameter file, set the DBOPTIONS parameter with the DECRYPTPASSWORD option.

As input, supply the encrypted shared secret and the Oracle GoldenGate-generated or user-defined decryption key.

DBOPTIONS DECRYPTPASSWORD shared secret algorithm ENCRYPTKEY keyname

In this specification:

- shared_secret is the clear-text shared secret that you created when you decided on a shared secret for the keystore. This setting is case sensitive.
- algorithm is AES256.
- keyname is the logical name of the encryption key in the ENCKEYS lookup file.

For example:

DBOPTIONS DECRYPTPASSWORD AACAAAAAAAAAAAIALCKDZIRHOJBHOJUH AES256 ENCRYPTKEY mykey1

9.1.14 Migrating Keystores in Isolated Mode

You can perform migration and reverse migration operations between TDE wallets and external keystores in isolated mode.

- Reverse Migrating an Isolated PDB from Oracle Key Vault to a TDE Wallet
 Isolated PDBs have individual keystores (TDE wallets or Oracle Key Vault external
 keystores), and can individually be migrated from the TDE wallet to Oracle Key Vault, and
 individually reverse migrated from Oracle Key Vault back to the TDE wallet.
- Migrating from an External Keystore to a Password-Protected TDE Wallet in Isolated Mode

In isolated mode, you can migrate from an external keystore to a password-protected TDE wallet.

9.1.14.1 Reverse Migrating an Isolated PDB from Oracle Key Vault to a TDE Wallet

Isolated PDBs have individual keystores (TDE wallets or Oracle Key Vault external keystores), and can individually be migrated from the TDE wallet to Oracle Key Vault, and individually reverse migrated from Oracle Key Vault back to the TDE wallet.

For both the TDE wallet and the external keystore to open at the same time, either the TDE wallet must have the same password as the external keystore, or alternatively, after the migration has completed you can create an auto-login keystore for the TDE wallet.

 Before migrating any database from wallet to Oracle Key Vault, upload the contents of the wallet (the current and retired TDE master encryption keys) into the virtual wallet that you created in Oracle Key Vault for that database.

In the following example, the static initialization parameter ${\tt WALLET_ROOT}$ is set to ${\tt /etc/ORACLE/KEYSTORES/\${ORACLE SID}}$:

```
/etc/ORACLE/KEYSTORES/${ORACLE_SID}/pdb-guid/okv/bin/okvutil upload -l /etc/ORACLE/KEYSTORES/${ORACLE_SID}/pdb-guid/tde/ -t wallet -g virtual wallet name in Oracle Key Vault -v 2
```

- 2. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- Set the password of the external keystore so that it matches that of the TDE wallet.

Some Oracle tools, such as Oracle Data Pump and Oracle Recovery Manager, require access to the old TDE wallet to decrypt data that was exported or backed up using the TDE master encryption key from the old TDE wallet.

 To set the TDE wallet password so that it is the same as that of the external keystore, use the following syntax:

```
ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD [FORCE KEYSTORE]

IDENTIFIED BY TDE_wallet_password

SET "external_key_manager_password"

WITH BACKUP [USING 'backup_identifier'];
```

In this specification:

- TDE_wallet_password is the password that was assigned to this wallet when it was created.
- external_key_manager_password is for an external keystore manager, which can be Oracle Key Vault or OCI Vault Key Management. Enclose this password in double quotation marks. For Oracle Key Vault, enter the password that was given during the Oracle Key Vault client installation. If at that time no password was given, then the password in the ADMINISTER KEY MANAGEMENT Statement becomes NULL.
- Alternatively, to create an auto-login keystore for a TDE wallet, use the following syntax:


```
ADMINISTER KEY MANAGEMENT CREATE [LOCAL] AUTO_LOGIN KEYSTORE FROM KEYSTORE 'keystore_location' IDENTIFIED BY TDE wallet password;
```

- 4. Provision Oracle Key Vault for the isolated mode PDB by following the instructions in *Oracle Key Vault Administrator's GuideOracle Key Vault Administrator's Guide* to install the Oracle Key Vault software onto the endpoint.
- **5.** Set the configuration of the keystore so that the external keystore becomes the new primary, and the password-protected TDE wallet becomes the secondary, as follows:

```
ALTER SYSTEM SET TDE CONFIGURATION="KEYSTORE CONFIGURATION=OKV|FILE";
```

6. Migrate the external keystore by using the following syntax:

```
ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY IDENTIFIED BY "external_key_manager_password" [FORCE KEYSTORE] MIGRATE USING TDE wallet password;
```

After you complete the migration, you do not need to restart the database, nor do you need to manually re-open the external keystore.

Related Topics

- Keystore Order After a Migration
 After you perform a migration, keystores can be either primary or secondary in their order.
- Migration of Keystores to and from Oracle Key Vault
 You can use Oracle Key Vault to migrate both TDE wallets and external keystores to and
 from Oracle Key Vault.

9.1.14.2 Migrating from an External Keystore to a Password-Protected TDE Wallet in Isolated Mode

In isolated mode, you can migrate from an external keystore to a password-protected TDE wallet.

- Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Ensure that you have enrolled the PDB endpoint and that the Oracle Key Vault configuration is present at the \$WALLET ROOT/pdb guid/okv location.
 - For both the TDE wallet and the external keystore to open at the same time, either the TDE wallet must have the same password as the external keystore, or alternatively, after the reverse migration has completed, you can create an auto-login TDE wallet.
- 3. Set the TDE_CONFIGURATION parameter as follows, so that FILE becomes the new primary keystore, and OKV becomes the secondary keystore.

```
ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE|OKV";
```

4. Now that the keystore configuration has been completed, issue the following statement to reverse migrate from the external keystore to the password-protected TDE wallet:

```
ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY

IDENTIFIED BY TDE_wallet_password

REVERSE MIGRATE USING "external_key_manager_password"

[WITH BACKUP [USING 'backup_identifier']];
```

5. Optionally, change the password of the newly migrated TDE wallet.

For example:

```
ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD IDENTIFIED BY old_password SET new_password WITH BACKUP USING 'pwd change';
```

After you complete these steps, the migration process automatically reloads the TDE wallet keys in memory. You do not need to restart the database, nor do you need to manually re-open the TDE wallet. The external keystore may still be required after reverse migration because the old keys are likely to have been used for encrypted backups or by tools such as Oracle Data Pump and Oracle Recovery Manager. You should create an auto-login TDE wallet and put the <code>HSM_PASSWORD</code> client secret into it. For example:

```
ADMINISTER KEY MANAGEMENT ADD SECRET 'external_key_manager_password' FOR CLIENT 'EXTERNAL_PASSWORD'
TO LOCAL AUTO_LOGIN KEYSTORE TDE_wallet_location
WITH BACKUP;
```

Related Topics

- About Migrating Back from an External Keystore
 To switch from using an external keystore solution to a TDE wallet, you can use reverse migration of the TDE wallet.
- Keystore Order After a Migration
 After you perform a migration, keystores can be either primary or secondary in their order.
- Migration of Keystores to and from Oracle Key Vault You can use Oracle Key Vault to migrate both TDE wallets and external keystores to and from Oracle Key Vault.

9.1.15 Uniting a Pluggable Database Keystore

Uniting a PDB keystore moves the TDE master encryption keys from the PDB keystore into the keystore of the CDB root. This enables the administrator of the keystore of the CDB root to manage the keys.

The client secrets are not moved. Instead, they are left behind in the keystore that the PDB used while it was configured in isolated mode. Oracle recommends that you delete client secrets from that keystore before you unite the PDB keystore. Similarly, when a PDB becomes isolated, no client secret contained in the keystore of the CDB root is moved.

- Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- Unite the PDB keystore, which moves the TDE master encryption keys from the PDB keystore into the keystore of the CDB root, by using the following syntax:

```
ADMINISTER KEY MANAGEMENT UNITE KEYSTORE

IDENTIFIED BY isolated_keystore_password

WITH ROOT KEYSTORE [FORCE KEYSTORE]

IDENTIFIED BY

[EXTERNAL STORE | keystore_password_of_cdb_root]

[WITH BACKUP [USING backup_id]];
```

In this specification:

- FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
 operation if an auto-login TDE wallet is open (and in use) or if the TDE wallet is
 closed.
- united_keystore_password: Knowledge of this password does not enable the user who performs the UNITE KEYSTORE operation privileges to perform ADMINISTER KEY MANAGEMENT UNITE KEYSTORE operations on the PDB.

When the keystore of a PDB is united with a keystore in the CDB root, all of the previously active (historical) TDE master encryption keys that were associated with the PDB are moved to the keystore of the CDB root. (If an ORA-46694: The keys are already in the root keystore error appears, see below.)

3. Confirm that the isolated mode PDB is now a united mode PDB.

```
SELECT KEYSTORE MODE FROM V$ENCRYPTION WALLET;
```

The output should be UNITED.

The keystore no longer exists but its master encryption key is now in the keystore in the CDB root. If you later decide that you want the united mode PDB to be an isolated mode PDB again, then you can use the ADMINISTER KEY MANAGEMENT ISOLATE KEYSTORE statement.

ORA-46694 error: If a wallet is created in the in a PDB context, then it changes the keystore type of the PDB to isolated, and unless a key is set for the PDB, the wallet status will be OPEN_NO_MASTER_KEY. Uniting this type of PDB using the ADMINISTER KEY MANAGEMENT UNITE KEYSTORE statement will result in an ORA-46694: The keys are already in the root keystore error. To change the KEYSTORE_MODE to UNITED for this PDB, you must change the TDE configuration for the PDB. In the PDB, run the following statement:

ALTER SYSTEM RESET TDE CONFIGURATION;

Related Topics

Isolating a Pluggable Database Keystore
 Isolating a PDB keystore moves the master encryption key from the CDB root keystore into an isolated mode keystore in the a PDB.

9.1.16 Creating a Keystore When the PDB Is Closed

When you create a keystore in a PDB that is closed, the new keystore is empty and the PDB is converted to isolated mode.

- About Creating a Keystore When the PDB Is Closed
 Creating a keystore in a PDB that is closed could inadvertently cause problems in rekey
 operations, but the keystore creation can be reverted.
- Reverting a Keystore Creation Operation When a PDB Is Closed
 If you have inadvertently created a keystore in a PDB (and thereby caused it to become configured in isolated mode), then you should reverse the keystore creation operation.

9.1.16.1 About Creating a Keystore When the PDB Is Closed

Creating a keystore in a PDB that is closed could inadvertently cause problems in rekey operations, but the keystore creation can be reverted.

In previous releases, if you tried to create a keystore in a closed PDB, you were prevented and an ORA-65040: operation not allowed from within a pluggable database error

would appear. Starting in Oracle Database release 18c, for convenience, when the keystore of the PDB is closed and if you run the ADMINISTER KEY MANAGEMENT CREATE KEYSTORE statement in the PDB, Oracle Database allows the operation.

If the closed PDB has not been configured to use encryption (that is, it has never had an ADMINISTER KEY MANAGEMENT SET KEY Statement performed in it), after you run ADMINISTER KEY MANAGEMENT CREATE KEYSTORE, resulting in an empty keystore and the configuration of the PDB being changed to isolated mode, then you can create a TDE master encryption key in this empty keystore.

If, however, the PDB was already configured to use encryption, then the PDB may be configured in united mode (and thus have its TDE master encryption key being managed in the keystore of the CDB root).

Mistakenly running an administer key management create keystore statement on such a closed PDB will create an additional keystore (which will be empty), and will then configure the PDB to be in isolated mode. This effectively misconfigures the PDB, because the PDB is now in isolated mode (whereas it should be in united mode), yet its TDE master encryption key is still in the keystore of the CDB root. This misconfiguration can cause problems later on, if you try to rekey the TDE master encryption key by using the ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY statement . An ORA-28362: master key not found error will appear, because when encryption has already been enabled and a key has been set, Oracle Database treats the administer key management set encryption key statement as a rekey operation. In order to perform a rekey operation, Oracle Database must locate the currently active TDE master encryption key of the PDB. But in this misconfigured PDB, Oracle Database cannot locate the TDE master encryption key, because the PDB is now in isolated mode and the necessary key is in the keystore of the CDB root. Hence, the PDB is no longer configured to search in the keystore of the PDB, and the rekey operation fails.

To remedy the misconfiguration of the PDB, you must reconfigure the PDB to united mode and you must remove the empty keystore. (Always make a backup before removing any keystore.) When the PDB is configured back to united mode, then the currently active TDE master encryption key is once again available for rekey and other TDE master encryption key operations.

If later on you want to configure the PDB to be in isolated mode, then you can open the PDB and run the <code>ADMINISTER KEY MANAGEMENT ISOLATE KEYSTORE</code> statement, which isolates the PDB and moves its TDE master encryption key and previously-active (historical) keys from the keystore of the CDB root to a newly-created keystore for the isolated PDB.

Related Topics

Reverting a Keystore Creation Operation When a PDB Is Closed
If you have inadvertently created a keystore in a PDB (and thereby caused it to
become configured in isolated mode), then you should reverse the keystore
creation operation.

9.1.16.2 Reverting a Keystore Creation Operation When a PDB Is Closed

If you have inadvertently created a keystore in a PDB (and thereby caused it to become configured in isolated mode), then you should reverse the keystore creation operation.

Use this procedure if you created a keystore in a closed PDB that already had encryption enabled (that is, it already had a TDE master encryption key).

- Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Confirm the mode of the PDB by querying the KEYSTORE_MODE column of the V\$ENCRYPTION WALLET dynamic view.
- 3. If the V\$ENCRYPTION_WALLET output is ISOLATED, then run the ALTER SYSTEM statement to reconfigure the PDB to united mode.
 - When pfile is in use, clear the TDE_CONFIGURATION parameter by using the following statement:

```
ALTER SYSTEM RESET TDE CONFIGURATION SCOPE=MEMORY;
```

In an Oracle Real Application Clusters environment, include the SID parameter:

```
ALTER SYSTEM RESET TDE CONFIGURATION SCOPE=MEMORY SID='*';
```

 When spfile is in use, clear the TDE_CONFIGURATION parameter by using this statement:

```
ALTER SYSTEM RESET TDE CONFIGURATION SCOPE=BOTH;
```

In an Oracle Real Application Clusters environment, include the SID parameter:

```
ALTER SYSTEM RESET TDE_CONFIGURATION SCOPE=BOTH SID='*';
```

- **4.** In the WALLET_ROOT/pdb_guid/tde directory, find and back up the ewallet.p12 keystore file that was mistakenly created.
- 5. Delete the mistakenly-created empty keystore file.

At this stage, the PDB will be in united mode and the correct keystore and TDE master encryption key will be available for any future rekey operations.

9.2 Administering Transparent Data Encryption in Isolated Mode

You can perform a number of general administrative tasks with Transparent Data Encryption in isolated mode.

- Cloning or Relocating Encrypted PDBs in Isolated Mode
 You can clone or relocate encrypted PDBs within the same container database, or across
 container databases.
- Unplugging and Plugging a PDB with Encrypted Data in a CDB in Isolated Mode
 In isolated mode, for a PDB that has encrypted data, you can plug it into a CDB.
 Conversely, you can unplug this PDB from the CDB.
- Cloning a PDB with Encrypted Data in a CDB in Isolated Mode

 The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause can clone a PDB that has encrypted data.

- Remotely Cloning an Encrypted PDB in Isolated Mode
 The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY
 clause can remotely clone a PDB that has encrypted data.
- Relocating an Encrypted PDB in Isolated Mode
 The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY
 clause can relocate across CDBs a cloned PDB that has encrypted data.
- How Keystore Open and Close Operations Work in Isolated Mode
 You should be aware of how keystore (TDE wallets or external keystores) open
 and close operations work in isolated mode.
- Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode In isolated mode, the EXPORT and IMPORT clauses of ADMINISTER KEY MANAGEMENT EXPORT can export or import master encryption keys for a PDB.

9.2.1 Cloning or Relocating Encrypted PDBs in Isolated Mode

You can clone or relocate encrypted PDBs within the same container database, or across container databases.

If you are trying to move a PDB in which the SYSTEM, SYSAUX, UNDO, or TEMP tablespace is encrypted, and using the manual export or import of keys, then you must first import the keys for the PDB in the target database's CDB\$ROOT before you create the PDB. Import of the keys are again required inside the PDB to associate the keys to the PDB.

Clone or relocate the PDB using the following syntax:

```
CREATE|RELOCATE PLUGGABLE DATABASE database_name KEYSTORE IDENTIFIED BY EXTERNAL STORE|target keystore password [NO REKEY];
```

Related Topics

Oracle Multitenant Administrator's Guide

9.2.2 Unplugging and Plugging a PDB with Encrypted Data in a CDB in Isolated Mode

In isolated mode, for a PDB that has encrypted data, you can plug it into a CDB. Conversely, you can unplug this PDB from the CDB.

- Unplugging a PDB That Has Encrypted Data in Isolated Mode
 You can unplug a PDB (that has encrypted data) from one CDB and then
 optionally plug it into another CDB.
- Plugging a PDB That Has Encrypted Data into a CDB in Isolated Mode
 After you plug a PDB that has encrypted data into a CDB, you can set the
 encryption key in the PDB.
- Unplugging a PDB That Has Master Encryption Keys Stored in an External Keystore in Isolated Mode

You can unplug a PDB from one CDB that has been configured with an external keystore and then plug it into another CDB also configured with an external keystore.

Plugging a PDB That Has Master Keys Stored in an External Keystore in Isolated Mode
 The ADMINISTER KEY MANAGEMENT statement can import an external keystore master
 encryption key to a PDB that has been moved to another CDB.

9.2.2.1 Unplugging a PDB That Has Encrypted Data in Isolated Mode

You can unplug a PDB (that has encrypted data) from one CDB and then optionally plug it into another CDB.

Unlike united mode, you do not need to specify the ENCRYPT clause in the ALTER PLUGGABLE DATABASE statement. The database that is unplugged contains data files and other associated files. Because each PDB can have its own unique keystore, you do not need to export the TDE master encryption key of the PDB that you want to unplug. You can check if a PDB has already been unplugged by querying the STATUS column of the DBA PDBS data dictionary view.

Unplug the isolated mode PDB as you normally unplug PDBs.

For example:

```
ALTER PLUGGABLE DATABASE pdb1 UNPLUG INTO '/oracle/data/pdb1.xml';
```

Related Topics

- Oracle Multitenant Administrator's Guide
- Oracle Database SQL Language Reference

9.2.2.2 Plugging a PDB That Has Encrypted Data into a CDB in Isolated Mode

After you plug a PDB that has encrypted data into a CDB, you can set the encryption key in the PDB.

Unlike united mode, you do not need to specify the DECRYPT clause in the CREATE PLUGGABLE DATABASE statement. When you plug an unplugged PDB into another CDB, the key version is set to 0 because this operation invalidates the history of the previous keys. You can check the key version by querying the KEY_VERSION column of the V\$ENCRYPTED_TABLESPACES dynamic view. Similarly, if a control file is lost and recreated, then the previous history of the keys is reset to 0. You can check if a PDB has already been plugged in by querying the STATUS column of the DBA PDBS data dictionary view.

- 1. Create the PDB by plugging the unplugged PDB into the CDB.
 - For example, if you had exported the PDB data into a metadata XML file:

```
CREATE PLUGGABLE DATABASE CDB1_PDB2
USING '/tmp/cdb1_pdb2.xml'
NOCOPY KEYSTORE
IDENTIFIED BY password;
```

If you had exported the PDB into an archive file:

```
CREATE PLUGGABLE DATABASE CDB1_PDB2
USING '/tmp/cdb1 pdb2.pdb';
```

During the open operation of the PDB after the plug operation, Oracle Database determines if the PDB has encrypted data. If so, it opens the PDB in the RESTRICTED mode.

You can find if the source database has encrypted data or a TDE master encryption key set in the keystore by querying the V\$ENCRYPTION KEYS dynamic view.

2. Open the PDB.

For example:

ALTER PLUGGABLE DATABASE CDB1 PDB2 OPEN;

3. Open the keystore in the CDB root.

For example:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY password;
```

Optionally, open the keystore in the PDB.

In the PDB, open the keystore and set the TDE master encryption key for the PDB.

For example:

```
ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY keystore_password WITH BACKUP USING 'emp key backup';
```

9.2.2.3 Unplugging a PDB That Has Master Encryption Keys Stored in an External Keystore in Isolated Mode

You can unplug a PDB from one CDB that has been configured with an external keystore and then plug it into another CDB also configured with an external keystore.

1. Unplug the PDB.

You can check if a PDB has already been unplugged by querying the STATUS column of the DBA PDBS data dictionary view.

2. Move the master encryption keys of the unplugged PDB from the hardware that was used at the source CDB to the hardware that is in use at the destination CDB.

Refer to the documentation for the external keystore for information about moving master keys between external keystores.

Related Topics

Oracle Multitenant Administrator's Guide

9.2.2.4 Plugging a PDB That Has Master Keys Stored in an External Keystore in Isolated Mode

The ADMINISTER KEY MANAGEMENT statement can import an external keystore master encryption key to a PDB that has been moved to another CDB.

1. Plug the unplugged isolated mode PDB into the destination CDB that has been configured with the external keystore.

You can check if a PDB has already been plugged in by querying the STATUS column of the DBA PDBS data dictionary view.

After the plug-in operation, the PDB that has been plugged in will be in restricted mode.

Ensure that the master keys from the external keystore that has been configured with the source CDB are available in the external keystore of the destination CDB.

- 3. Connect to the plugged PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT OR SYSKM privilege.
- 4. Open the keystore of the plugged PDB.

```
For example, for a PDB called PDB1:
```

```
ALTER SESSION SET CONTAINER = PDB1;
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
IDENTIFIED BY "external key manager password";
```

5. Import the external keystore master encryption key into the PDB.

```
ADMINISTER KEY MANAGEMENT IMPORT ENCRYPTION KEYS
WITH SECRET "external_keystore" FROM 'external_keystore'
IDENTIFIED BY "external_key_manager_password";
```

6. Close and re-open the PDB.

```
ALTER PLUGGABLE DATABASE PDB1 CLOSE;
ALTER PLUGGABLE DATABASE PDB1 OPEN;
```

Related Topics

Oracle Multitenant Administrator's Guide

9.2.3 Cloning a PDB with Encrypted Data in a CDB in Isolated Mode

The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause can clone a PDB that has encrypted data.

- Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Ensure that the TDE wallet of the PDB that you plan to clone is open.

You can query the STATUS column of the V\$ENCRYPTION_WALLET view to find if the TDE wallet is open.

For example:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN FORCE KEYSTORE IDENTIFIED BY TDE_wallet_password;
```

3. Clone the PDB.

For example:

```
CREATE PLUGGABLE DATABASE cdb1_pdb3 FROM cdb1_pdb1 FILE_NAME_CONVERT=('cdb1_pdb1', 'pdb3/cdb1_pdb3') KEYSTORE IDENTIFIED BY TDE wallet password;
```

Replace <code>TDE_wallet_password</code> with the password of the TDE wallet of the CDB where the <code>cdb1 pdb3</code> clone is created.

After you create the cloned PDB, encrypted data is still accessible by the clone using the master encryption key of the original PDB. After a PDB is cloned, there may be user data in the encrypted tablespaces. This encrypted data is still accessible because the master encryption key of the source PDB is copied over to the destination PDB. Because the clone is a copy of the source PDB but will eventually follow its own course and have its own data and security policies, you should rekey the master encryption key of the cloned PDB.

Rekey the master encryption key of the cloned PDB.

For example:

```
ADMINISTER KEY MANAGEMENT SET KEY
IDENTIFIED BY TDE_wallet_password
WITH BACKUP USING 'emp key backup';
```

Before you rekey the master encryption key of the cloned PDB, the clone can still use master encryption keys that belong to the original PDB. However, these master encryption keys do not appear in the cloned PDB V\$ dynamic views. Rekeying the master encryption key ensures that the cloned PDB uses its own unique keys, which will be viewable in the V\$ views.

Related Topics

About Managing Cloned PDBs That Have Encrypted Data in United Mode
When you clone a PDB, you must make the master encryption key of the source
PDB available to cloned PDB.

9.2.4 Remotely Cloning an Encrypted PDB in Isolated Mode

The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause can remotely clone a PDB that has encrypted data.

- **1.** Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Query the STATUS column of the V\$ENCRYPTION_WALLET view to ensure that the TDE wallet of the PDB that you plan to clone is open.
- 3. Create a database link for the PDB that you want to clone remotely.
 - Use the CREATE DATABASE LINK SQL statement to create the database link. You must create the database link by following the database link prerequisites that are required for cloning a remote PDB.
- **4.** Use the CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause to perform the clone of the PDB.

For example:

```
CREATE PLUGGABLE DATABASE target_pdb
FROM source_pdb@clone_link KEYSTORE
IDENTIFIED BY TDE wallet password;
```

The <code>TDE_wallet_password</code> is the password of a new TDE wallet that will be created in <code>WALLET ROOT/target pdb guid/tde</code> for the incoming PDB.

After you create the cloned PDB, encrypted data is still accessible because the master encryption key of the source PDB is copied over to the destination PDB. Because it will eventually follow its own course and have its own data and security policies, you should rekey the master encryption key of the cloned PDB.

5. Rekey the master encryption key of the remotely cloned PDB.

Run the following SQL statement to create an administer key management command with a \mbox{TAG} :

```
SELECT ' ADMINISTER KEY MANAGEMENT SET KEY
USING TAG '''||SYS_CONTEXT('USERENV', 'CON_NAME')||' '||TO_CHAR
```



```
(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')||'''

IDENTIFIED BY KEYSTORE_PASSWORD WITH BACKUP;'

AS "SET KEY COMMAND" FROM DUAL;

ADMINISTER KEY MANAGEMENT SET KEY USING TAG 'PDB_NAME DATE TIME'

IDENTIFIED BY KEYSTORE PASSWORD WITH BACKUP;
```

Before you rekey the master encryption key of the cloned PDB, the clone can still use master encryption keys that belong to the original PDB. However, these master encryption keys do not appear in the cloned PDB V\$ dynamic views. Rekeying the master encryption key ensures that the cloned PDB uses its own unique keys, which will be viewable in the V\$ views.

Related Topics

- About Managing Cloned PDBs That Have Encrypted Data in United Mode
 When you clone a PDB, you must make the master encryption key of the source PDB
 available to cloned PDB.
- Opening the TDE Wallet in a United Mode PDB
 To open a TDE wallet in united mode, you must use the ADMINISTER KEY MANAGEMENT statement with the SET KEYSTORE OPEN clause.
- Oracle Multitenant Administrator's Guide
- Oracle Multitenant Administrator's Guide
- Oracle Database SQL Language Reference

9.2.5 Relocating an Encrypted PDB in Isolated Mode

The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause can relocate across CDBs a cloned PDB that has encrypted data.

- 1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT OR SYSKM privilege.
- 2. Query the STATUS column of the V\$ENCRYPTION_WALLET view to ensure that the TDE wallet of the PDB that you want to relocate is open.
- 3. Create a database link for the PDB that you want to relocate.

Use the CREATE DATABASE LINK SQL statement to create the database link. You must create the database link by following the database link prerequisites that are required for relocating a remote PDB or a non-CDB.

4. Use the CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause to relocate the PDB.

For example:

```
CREATE PLUGGABLE DATABASE target_pdb_name FROM src_pdb_name@dblink RELOCATE KEYSTORE IDENTIFIED BY TDE wallet password;
```

Replace $TDE_wallet_password$ with the password of the TDE wallet of the CDB where the cdb1 pdb3 clone is created.

After you create the cloned PDB, encrypted data is still accessible by the clone using the master encryption key of the original PDB. After a PDB is cloned, there may be user data in the encrypted tablespaces. This encrypted data is still accessible because the master encryption key of the source PDB is copied over to the destination PDB. Because the clone is a copy of the source PDB but will eventually follow its own course and have its own data and security policies, you should rekey the master encrytion key of the cloned PDB.

5. Rekey the master encryption key of the remotely cloned PDB.

For example:

```
ADMINISTER KEY MANAGEMENT SET KEY
FORCE KEYSTORE
IDENTIFIED BY TDE_wallet_password
WITH BACKUP USING 'emp key backup';
```

In this example, FORCE KEYSTORE is included because the TDE wallet must be open during the rekey operation.

Before you rekey the master encryption key of the cloned PDB, the clone can still use master encryption keys that belong to the original PDB. However, these master encryption keys do not appear in the cloned PDB V\$ dynamic views. Rekeying the master encryption key ensures that the cloned PDB uses its own unique keys, which will be viewable in the V\$ views.

Related Topics

- About Managing Cloned PDBs That Have Encrypted Data in United Mode
 When you clone a PDB, you must make the master encryption key of the source
 PDB available to cloned PDB.
- Opening the TDE Wallet in a United Mode PDB
 To open a TDE wallet in united mode, you must use the ADMINISTER KEY MANAGEMENT Statement with the SET KEYSTORE OPEN clause.
- Oracle Multitenant Administrator's Guide
- Oracle Multitenant Administrator's Guide
- Oracle Database SQL Language Reference

9.2.6 How Keystore Open and Close Operations Work in Isolated Mode

You should be aware of how keystore (TDE wallets or external keystores) open and close operations work in isolated mode.

For each PDB in isolated mode, you must explicitly open the password-protected TDE wallet or external keystore in the PDB to enable the Transparent Data Encryption operations to proceed. (Auto-login and local auto-login TDE wallets open automatically.) Closing a keystore on a PDB blocks all of the Transparent Data Encryption operations on that PDB.

The open and close keystore operations in a PDB depend on the open and close status of the keystore in the PDB.

Note the following:

- You can create a separate keystore password for each PDB in the multitenant environment.
- Before you can manually open a password-protected software or an external keystore in an individual PDB, you must open the keystore in the CDB root.
- If an auto-login TDE wallet is in use, or if the TDE wallet is closed, then include the FORCE KEYSTORE clause in the ADMINISTER KEY MANAGEMENT statement when you open the TDE wallet.
- If the keystore is a password-protected TDE wallet that uses an external store for passwords, then replace the password in the IDENTIFIED BY clause with EXTERNAL STORE.
- Before you can set a TDE master encryption key in an individual PDB, you must set the key in the CDB root. Oracle highly recommends that you include the USING TAG clause when you set keys in PDBs. For example:

```
SELECT ' ADMINISTER KEY MANAGEMENT SET KEY

USING TAG '''||SYS_CONTEXT('USERENV', 'CON_NAME')||' '||TO_CHAR (SYSDATE,
'YYYY-MM-DD HH24:MI:SS')||'''

FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE

WITH BACKUP CONTAINER = CURRENT; ' AS "SET KEY COMMAND" FROM DUAL;
```

Including the USING TAG clause enables you to quickly and easily identify the keys that belong to a certain PDB, and when they were created.

- Auto-login and local auto-login TDE wallets open automatically. You do not need to manually open these from the root first, or from the PDB.
- If there is any PDB configured in isolated mode that has its keystore open, then an attempt to close the keystore in the CDB root would fail with an ORA-46692 cannot close wallet error. Use the FORCE CLOSE clause in the ADMINISTER KEY MANAGEMENT statement to override this behavior.
- If you perform an ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN statement in the CDB root and set the CONTAINER clause to ALL, then the keystore will only be opened in each open PDB that is configured in united mode. Keystores for any PDBs that are configured in isolated mode are not opened.

9.2.7 Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode

In isolated mode, the EXPORT and IMPORT clauses of ADMINISTER KEY MANAGEMENT EXPORT can export or import master encryption keys for a PDB.

- About Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode
 In isolated mode, you can export and import master encryption keys from the CDB root.
- Exporting or Importing a Master Encryption Key for a PDB in Isolated Mode In isolated mode, the ADMINISTER KEY MANAGEMENT statement can export or import a master encryption key for a PDB.
- Example: Exporting a Master Encryption Key from a PDB in Isolated Mode
 The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS statement can export
 master encryption keys for a PDB.

• Example: Importing a Master Encryption Key into a PDB in Isolated Mode
The ADMINISTER KEY MANAGEMENT IMPORT ENCRYPTION KEYS statement can import
a master encryption key into a PDB.

9.2.7.1 About Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode

In isolated mode, you can export and import master encryption keys from the CDB root.

You can export and import all of the master encryption keys that belong to the PDB by exporting and importing the master encryption keys from within a PDB. Export and import operations of master encryption keys in a PDB supports the PDB unplug and plug operations. During a PDB unplug and plug operations, all the master encryption keys that belong to a PDB, as well as the metadata, are involved. Therefore, the WITH IDENTIFIER clause of the ADMINISTER KEY MANAGEMENT EXPORT Statement is not allowed when you export keys from within a PDB. The WITH IDENTIFIER clause is only permitted in the CDB root.

You should include the FORCE KEYSTORE clause if the CDB root has an auto-login keystore or if the keystore is closed. If the keystore has been configured to use an external store for the password, then use the IDENTIFIED BY EXTERNAL STORE clause. For example, to perform an export operation for this scenario:

```
ADMINISTER KEY MANAGEMENT EXPORT KEYS
WITH SECRET "my_secret"
TO '/etc/TDE/export.exp'
FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE;
```

This ADMINISTER KEY MANAGEMENT EXPORT operation exports not only the keys but creates metadata that is necessary for PDB environments (as well as for cloning operations).

Inside a PDB, the export operation of master encryption keys exports the keys that were created or activated by a PDB with the same GUID as the PDB where the keys are being exported. Essentially, all of the keys that belong to a PDB where the export is being performed will be exported.

The importing of master encryption keys from an export file within a PDB takes place only if the master encryption key was exported from another PDB with the same GUID. To support the plug-in of a non-CDB as PDB into a CDB, you must have already exported the TDE master encryption keys from the non-CDB and imported them into the PDB without the WITH IDENTIFIER clause. Because the PDB-specific details, such as the PDB name and database ID, can change from one CDB to the next, the PDB-specific information is modified during the import to reflect the updated PDB information.

Within a PDB, you can only export the keys of a PDB as a whole. The ability to export them selectively based on a query or an identifier is restricted to the root.

9.2.7.2 Exporting or Importing a Master Encryption Key for a PDB in Isolated Mode

In isolated mode, the ADMINISTER KEY MANAGEMENT statement can export or import a master encryption key for a PDB.

- 1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.
- 2. Perform the export or import operation.

For example:

```
ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS WITH SECRET "hr_secret" TO '/tmp/export.p12' FORCE KEYSTORE
IDENTIFIED BY password;
```

Ensure that you include the FORCE KEYSTORE clause because the keystore must be open for this operation.

Related Topics

• Example: Exporting a Master Encryption Key from a PDB in Isolated Mode
The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS statement can export
master encryption keys for a PDB.

9.2.7.3 Example: Exporting a Master Encryption Key from a PDB in Isolated Mode

The administer key management export encryption keys statement can export master encryption keys for a PDB.

Example 9-7 shows how to export a master encryption key from the PDB hrpdb. In this example, the FORCE KEYSTORE clause is included in case the auto-login keystore is in use, or if the keystore is closed.

Example 9-7 Exporting a Master Encryption Key from a PDB

```
ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS WITH SECRET "my_secret" TO '/tmp/export.p12' FORCE KEYSTORE
IDENTIFIED BY password;
```

9.2.7.4 Example: Importing a Master Encryption Key into a PDB in Isolated Mode

The ADMINISTER KEY MANAGEMENT IMPORT ENCRYPTION KEYS statement can import a master encryption key into a PDB.

Example 9-8 shows how to import a master encryption key into the PDB hrpdb.

Example 9-8 Importing a Master Encryption Key into a PDB

```
ADMINISTER KEY MANAGEMENT IMPORT ENCRYPTION KEYS WITH SECRET "my_secret" FROM '/tmp/export.p12' FORCE KEYSTORE IDENTIFIED BY password WITH BACKUP;
```


10

General Considerations of Using Transparent Data Encryption

When you use Transparent Data Encryption, you should consider factors such as security, performance, and storage overheads.

- Migrating Encrypted TDE Columns or Tablespaces after a Database Upgrade from Release 11g
 - If you are upgrading from Oracle Database release 11g, then you must manually convert the typed master encryption keys to united mode master encryption keys.
- Compression and Data Deduplication of Encrypted Data
 When you use Oracle's compression products and options with Transparent Data
 Encryption (TDE) tablespace encryption, Oracle Database automatically applies
 compression before performing the encryption.
- Security Considerations for Transparent Data Encryption
 As with all Oracle Database features, you should consider security when you create TDE policies.
- Performance and Storage Overhead of Transparent Data Encryption The performance of Transparent Data Encryption can vary.
- Modifying Your Applications for Use with Transparent Data Encryption You can modify your applications to use Transparent Data Encryption.
- How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT
 Many of the clauses from the ALTER SYSTEM statement correspond to the ADMINISTER KEY
 MANAGEMENT statement.
- Data Loads from External Files to Tables with Encrypted Columns
 You can use SQL*Loader to perform data loads from files to tables that have encrypted columns.
- Transparent Data Encryption and Database Close Operations
 You should ensure that the software or external keystore is open before you close the
 database.

10.1 Migrating Encrypted TDE Columns or Tablespaces after a Database Upgrade from Release 11g

If you are upgrading from Oracle Database release 11g, then you must manually convert the typed master encryption keys to united mode master encryption keys.

You must perform this task for master encryption keys in both column encryption and tablespace encryption configurations.

1. Navigate to directory that has the TDE password-based keystore ewallet.p12.

2. Check the keystore contents and look for typed keys (that is, identifiers starting with <code>ORACLE.SECURITY.TS.ENCRYPTION.B</code> as follows).

```
mkstore -wrl ewallet.p12 -list
Enter wallet password: wallet password
```

Output similar to the following appears. The entries with **TS** are the typed keys that must be converted.

3. Back up the keystore.

For example:

```
cp ewallet.p12 ewallet ddddmmyy.p12
```

4. Create a united key for each typed key that you found in the keystore.

To accomplish this, you must modify the identifier name (Key ID) to have **DB** instead of **TS** and the first letter from **B** to **A**. For this you must add a new entry to the keystore. The following example shows how to convert the first typed key in the list that was shown in the preceding steps.

a. List the value for identifier to double-check it. The bold text indicates the two changes to be made.

For example:

```
ORACLE.SECURITY.TS.ENCRYPTION.BW8QuLUTgOpV0PtEt/lR028CAwAAAAAAAAAAAAAAAAA
```

This example must be changed as follows:

```
ORACLE.SECURITY.DB.ENCRYPTION.AW8QuLUTgOpV0PtEt/1R028CAwAAAAAAAAAAAAAAAAA
```

b. Using this updated entry, add a new entry to the keystore.

For example:

```
mkstore -wrl wallet_location -viewEntry
ORACLE.SECURITY.TS.ENCRYPTION.BW8QuLUTgOpV0PtEt/
1R028CAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
```


The -viewEntry option of this command displays the identifier value for the TS encryption, which you must include in the next command when you create the keystore entry:

- For an auto-login keystore, rename the old auto-login keystore and then create a new one.
 - i. Back up the master encryption key. For example:

```
mv cwallet.sso cwallet ddddmmyy.sso
```

ii. Use the ADMINISTER KEY MANAGEMENT command to create the auto-login keystore.

Related Topics

Creating an Auto-Login or a Local Auto-Login TDE Wallet
 As an alternative to password-protected TDE wallets, you can create either an auto-login or local auto-login TDE wallet.

10.2 Compression and Data Deduplication of Encrypted Data

When you use Oracle's compression products and options with Transparent Data Encryption (TDE) tablespace encryption, Oracle Database automatically applies compression before performing the encryption.

The compression products include the following: Oracle Recovery Manager (Oracle RMAN) compression, Oracle Advanced Compression, Exadata Hybrid Columnar Compression (EHCC), and so on.

This ensures that you receive the maximum space and performance benefits from compression, while also receiving the security of encryption at rest. In the CREATE TABLESPACE SQL statement, include both the COMPRESS and ENCRYPT clauses.

With column encryption, Oracle Database compresses the data after it encrypts the column. This means that compression will have minimal effectiveness on encrypted columns. There is one notable exception: if the column is a SecureFiles LOB, and the encryption is implemented with SecureFiles LOB Encryption, and the compression (and possibly deduplication) are implemented with SecureFiles LOB Compression & Deduplication, then compression is performed before encryption. Similar to the CREATE TABLESPACE statement for tablespace encryption, include both the COMPRESS and ENCRYPT clauses.

The type of compression that you can use depends on the licensing that you have for Advanced Compression. See *Oracle Database Licensing Information User Manual*.

Related Topics

Oracle Database Backup and Recovery User's Guide

10.3 Security Considerations for Transparent Data Encryption

As with all Oracle Database features, you should consider security when you create TDE policies.

- Transparent Data Encryption General Security Advice
 Security considerations for Transparent Data Encryption (TDE) operate within the
 broader area of total system security.
- Transparent Data Encryption Column Encryption-Specific Advice
 Additional security considerations apply to normal database and network
 operations when using TDE.
- Managing Security for Plaintext Fragments
 You should remove old plaintext fragments that can appear over time.

10.3.1 Transparent Data Encryption General Security Advice

Security considerations for Transparent Data Encryption (TDE) operate within the broader area of total system security.

Follow these general guidelines:

- Identify the degrees of sensitivity of data in your database, the protection that they
 need, and the levels of risk to be addressed. For example, highly sensitive data
 requiring stronger protection can be encrypted with the AES256 algorithm. A
 database that is not as sensitive can be protected with no salt or the nomac option
 to enable performance benefits.
- Evaluate the costs and benefits that are acceptable to data and keystore
 protection. Protection of keys determines the type of keystore to be used: autologin TDE wallets, password-based TDE wallets, or external keystores.
- Consider having separate security administrators for TDE and for the database.
- Consider having a separate and exclusive keystore for TDE.
- Implement protected back-up procedures for your encrypted data.

10.3.2 Transparent Data Encryption Column Encryption-Specific Advice

Additional security considerations apply to normal database and network operations when using TDE.

Encrypted column data stays encrypted in the data files, undo logs, redo logs, and the buffer cache of the system global area (SGA). However, data is decrypted during expression evaluation, making it possible for decrypted data to appear in the swap file on the disk. Privileged operating system users can potentially view this data.

Column values encrypted using TDE are stored in the data files in encrypted form. However, these data files may still contain some plaintext fragments, called ghost

copies, left over by past data operations on the table. This is similar to finding data on the disk after a file was deleted by the operating system.

10.3.3 Managing Security for Plaintext Fragments

You should remove old plaintext fragments that can appear over time.

Old plaintext fragments may be present for some time until the database overwrites the blocks containing such values. If privileged operating system users bypass the access controls of the database, then they might be able to directly access these values in the data file holding the tablespace.

To minimize this risk:

1. Create a new tablespace in a new data file.

You can use the CREATE TABLESPACE statement to create this tablespace.

2. Move the table containing encrypted columns to the new tablespace. You can use the ALTER TABLE.....MOVE statement.

Repeat this step for all of the objects in the original tablespace.

3. Drop the original tablespace.

You can use the DROP TABLESPACE tablespace INCLUDING CONTENTS KEEP DATAFILES statement. Oracle recommends that you securely delete data files using platform-specific utilities.

4. Use platform-specific and file system-specific utilities to securely delete the old data file. Examples of such utilities include shred (on Linux) and sdelete (on Windows).

10.4 Performance and Storage Overhead of Transparent Data Encryption

The performance of Transparent Data Encryption can vary.

- Performance Overhead of Transparent Data Encryption
 Transparent Data Encryption tablespace encryption has small associated performance overhead.
- Storage Overhead of Transparent Data Encryption
 TDE tablespace encryption has no storage overhead, but TDE column encryption has some associated storage overhead.

10.4.1 Performance Overhead of Transparent Data Encryption

Transparent Data Encryption tablespace encryption has small associated performance overhead.

The actual performance impact on applications can vary. TDE column encryption affects performance only when data is retrieved from or inserted into an encrypted column. No reduction in performance occurs for operations involving unencrypted columns, even if these columns are in a table containing encrypted columns. Accessing data in encrypted columns involves small performance overhead, and the exact overhead you observe can vary.

The total performance overhead depends on the number of encrypted columns and their frequency of access. The columns most appropriate for encryption are those containing the most sensitive data.

Enabling encryption on an existing table results in a full table update like any other ALTER TABLE operation that modifies table characteristics. Keep in mind the potential performance and redo log impact on the database server before enabling encryption on a large existing table.

A table can temporarily become inaccessible for write operations while encryption is being enabled, TDE table keys are being rekeyed, or the encryption algorithm is being changed. You can use online table redefinition to ensure that the table is available for write operations during such procedures.

If you enable TDE column encryption on a very large table, then you may need to increase the redo log size to accommodate the operation.

Encrypting an indexed column takes more time than encrypting a column without indexes. If you must encrypt a column that has an index built on it, you can try dropping the index, encrypting the column with NO SALT, and then re-creating the index.

If you index an encrypted column, then the index is created on the encrypted values. When you query for a value in the encrypted column, Oracle Database transparently encrypts the value used in the SQL query. It then performs an index lookup using the encrypted value.

If you must perform range scans over indexed, encrypted columns, then use TDE tablespace encryption in place of TDE column encryption.

Related Topics

- Creating an Encrypted Column in an External Table
 The external table feature enables you to access data in external sources as if the data were in a database table.
- Oracle Database Administrator's Guide

10.4.2 Storage Overhead of Transparent Data Encryption

TDE tablespace encryption has no storage overhead, but TDE column encryption has some associated storage overhead.

Encrypted column data must have more storage space than plaintext data. In addition, TDE pads out encrypted values to multiples of 16 bytes. This means that if a credit card number requires nine bytes for storage, then an encrypted credit card value will require an additional seven bytes.

Each encrypted value is also associated with a 20-byte integrity check. This does not apply if you have encrypted columns using the \mathtt{NOMAC} parameter. If data was encrypted with salt, then each encrypted value requires an additional 16 bytes of storage.

The maximum storage overhead for each encrypted value is from one to 52 bytes.

Related Topics

• Creating an Encrypted Column in an External Table
The external table feature enables you to access data in external sources as if the data
were in a database table.

10.5 Modifying Your Applications for Use with Transparent Data Encryption

You can modify your applications to use Transparent Data Encryption.

- Configure the software or external keystore for TDE, and then set the master encryption key.
- 2. Verify that the master encryption key was created by querying the KEY_ID column of the V\$ENCRYPTION KEYS view.
- 3. Identify the sensitive columns (such as those containing credit card data) that require Transparent Data Encryption protection.
- 4. Decide whether to use TDE column encryption or TDE tablespace encryption.

See the following sections for more information:

- How Transparent Data Encryption Column Encryption Works
- How Transparent Data Encryption Tablespace Encryption Works
- 5. Open the keystore.
- **6.** Encrypt the columns or tablespaces.

See the following sections for more information:

- Encrypting Columns in Tables
- Encryption Conversions for Tablespaces and Databases

10.6 How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT

Many of the clauses from the ALTER SYSTEM statement correspond to the ADMINISTER KEY MANAGEMENT statement.

Table 10-1 compares the Transparent Data Encryption usage of the ALTER SYSTEM statement and the orapki utility from previous releases with the ADMINISTER KEY MANAGEMENT statement.

Table 10-1 How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT

Behavior	ALTER SYSTEM or orapki	ADMINISTER KEY MANAGEMENT
Creating a keystore	For TDE wallets:	For TDE wallets:
	ALTER SYSTEM SET ENCRYPTION KEY ["certificate_ID"] IDENTIFIED BY keystore_password;	ADMINISTER KEY MANAGEMENT CREATE KEYSTORE IDENTIFIED BY TDE_wallet_password
	For external keystores, the keystore is available after you configure the external key manager.	For external keystores, the keystore is available after you configure the external key manager.
Creating an auto-login	orapki wallet create -wallet wallet_location -auto_login [-pwd password]	For TDE wallets:
keystore		ADMINISTER KEY MANAGEMENT CREATE [LOCAL] AUTO_LOGIN KEYSTORE FROM KEYSTORE IDENTIFIED BY TDE_wallet_password;
		This type of keystore applies to TDE wallets only.
Opening a keystore	ALTER SYSTEM SET [ENCRYPTION] WALLET OPEN IDENTIFIED BY keystore_password;	ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN [FORCE KEYSTORE] IDENTIFIED BY keystore_password EXTERNAL STORE [CONTAINER = ALL CURRENT];
Closing a keystore	ALTER SYSTEM SET [ENCRYPTION] WALLET CLOSE IDENTIFIED BY keystore_password;	For both TDE wallets and external keystores:
		ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE [IDENTIFIED BY keystore_password] [CONTAINER = ALL CURRENT];
Reverse migrating from an external key manager to a TDE wallet	ALTER SYSTEM SET [ENCRYPTION] KEY IDENTIFIED BY wallet_password REVERSE MIGRATE USING "external_key_manager_pass word";	ADMINISTER KEY MANAGEMENT SET [ENCRYPTION] KEY IDENTIFIED BY keystore_password REVERSE MIGRATE USING "external_key_manager_password" WITH BACKUP [USING 'backup_identifier'];
Migrating from a TDE wallet to Oracle Key Vault or Oracle Cloud Interface (OCI) Key Management Service (KMS)	ALTER SYSTEM SET [ENCRYPTION] KEY IDENTIFIED BY "Oracle_Key_Vault_password" MIGRATE USING wallet_password;	ADMINISTER KEY MANAGEMENT SET [ENCRYPTION] KEY IDENTIFIED BY "Oracle_Key_Vault_password" MIGRATE USING wallet_password;

Table 10-1 (Cont.) How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT

Behavior	ALTER SYSTEM or orapki	ADMINISTER KEY MANAGEMENT
Changing a keystore password	orapki wallet change_pwd -wallet wallet_location [-oldpwd password] [-newpwd password]	For password-based TDE wallets: ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD IDENTIFIED BY TDE_wallet_old_password SET TDE_wallet_new_password [WITH BACKUP [USING 'backup_identifier']];
Backing up a password-based TDE wallet	No ALTER SYSTEM or orapki equivalent for this functionality	For external keystores, you close the keystore, change it in the external key manager interface, and then reopen the keystore. ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE [USING 'backup_identifier'] IDENTIFIED BY TDE_wallet_password [TO 'TDE_wallet_location'];
Merging two TDE wallets into a third new keystore	No ALTER SYSTEM or orapki equivalent for this functionality	ADMINISTER KEY MANAGEMENT MERGE KEYSTORE 'TDE_wallet1_location' [IDENTIFIED BY TDE_wallet1_password] AND KEYSTORE 'TDE_wallet2_location' [IDENTIFIED BY TDE_wallet2_password] INTO NEW KEYSTORE 'TDE_wallet3_location' IDENTIFIED BY TDE_wallet3_password;
Merging one TDE wallet into another existing keystore	No ALTER SYSTEM or orapki equivalent for this functionality	ADMINISTER KEY MANAGEMENT MERGE KEYSTORE 'TDE_wallet1_location' [IDENTIFIED BY TDE_wallet1_password] INTO EXISTNG KEYSTORE 'TDE_wallet2_location' IDENTIFIED BY TDE_wallet2_password [WITH BACKUP [USING 'backup_identifier']];
Setting or rekeying the master encryption key	ALTER SYSTEM SET [ENCRYPTION] KEY IDENTIFIED BY keystore_password; Note: The ALTER SYSTEM SET ENCRYPTION KEY statement does not update the V\$ENCRYPTION_KEYS dynamic view after you rekey the encryption key.	ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY [USING TAG 'tag'] IDENTIFIED BY keystore_password WITH BACKUP [USING 'backup_identifier'] [CONTAINER = ALL CURRENT]; After you rekey the encryption key, the V\$ENCRYPTION_KEYS dynamic view is updated.
Creating a master encryption key for later user	No ALTER SYSTEM or orapki equivalent for this functionality	ADMINISTER KEY MANAGEMENT CREATE KEY [USING TAG 'tag'] IDENTIFIED BY keystore_password [WITH BACKUP [USING 'backup_identifier']] [CONTAINER = (ALL CURRENT)];

Table 10-1 (Cont.) How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT

Behavior	ALTER SYSTEM or orapki	ADMINISTER KEY MANAGEMENT		
Activating a master encryption key	No ALTER SYSTEM or orapki equivalent for this functionality	ADMINISTER KEY MANAGEMENT USE KEY 'key_identifier' [USING TAG 'tag'] IDENTIFIED BY keystore_password [WITH BACKUP [USING 'backup_identifier']];		
Creating custom tags for master encryption keys	No ALTER SYSTEM or orapki equivalent for this functionality	ADMINISTER KEY MANAGEMENT SET TAG 'tag' FOR 'master_key_identifier' IDENTIFIED BY keystore_password [WITH BACKUP [USING 'backup_identifier']];		
Exporting a master encryption key	No ALTER SYSTEM or orapki equivalent for this functionality	ADMINISTER KEY MANAGEMENT EXPORT [ENCRYPTION] KEYS WITH SECRET "export_secret" TO 'file_path' IDENTIFIED BY TDE_wallet_password [WITH IDENTIFIER IN 'key_id1', 'key_id2', 'key_idn' (SQL_query)]		
Importing a master encryption key	No ALTER SYSTEM or orapki equivalent for this functionality	ADMINISTER KEY MANAGEMENT IMPORT [ENCRYPTION] KEYS WITH SECRET "import_secret" FROM 'file_name' IDENTIFIED BY TDE_wallet_password [WITH BACKUP [USING 'backup_identifier']];		
Storing Oracle Database secrets in a keystore	No ALTER SYSTEM or orapki equivalent for this functionality	For TDE wallets:		
		ADMINISTER KEY MANAGEMENT ADD SECRET UPDATE SECRET DELETE SECRET "secret" FOR CLIENT 'client_identifier' [USING TAG'tag'] IDENTIFIED BY TDE_wallet_password [WITH BACKUP [USING 'backup_identifier'];		
		For external keystores:		
		ADMINISTER KEY MANAGEMENT ADD SECRET UPDATE SECRET DELETE SECRET "secret" FOR CLIENT 'client_identifier' [USING TAG 'tag'] IDENTIFIED BY "external_key_manager_password";		

10.7 Data Loads from External Files to Tables with Encrypted Columns

You can use SQL*Loader to perform data loads from files to tables that have encrypted columns.

Be aware that with SQL*Loader, you cannot include the ENCRYPT clause in the column definition of an external table of the type ORACLE_LOADER, but you can include it in the column definitions of external tables of type ORACLE DATAPUMP.

External tables of type ORACLE LOADER

The reason that you cannot include the ENCRYPT clause in the column definitions of external tables of the type ORACLE_LOADER is because the contents of an external table with the ORACLE_LOADER type must come from a user-specified plaintext "backing file," and such plaintext files cannot contain any TDE encrypted data.

If you use the ENCRYPT clause in the definition of an external table of type ORACLE_LOADER, then when you query the TDE-encrypted column in this external table, the query fails. This is because TDE expects the external data to have been encrypted, and automatically tries to decrypt it on load. This action fails because the "backing file" only contains plaintext.

External tables of type ORACLE DATAPUMP

You can use TDE column encryption with external tables of type <code>ORACLE_DATAPUMP</code>. This is because for external tables of <code>ORACLE_DATAPUMP</code> type, the "backing file" is always created by Oracle Database(during an unload operation) and thus does have support for being populated with encrypted data.

10.8 Transparent Data Encryption and Database Close Operations

You should ensure that the software or external keystore is open before you close the database.

The master encryption keys may be required during the database close operation. The database close operation automatically closes the software or external keystore.

Related Topics

- Step 2: Open the TDE Wallet
 Depending on the type of TDE wallet you create, you must manually open the wallet
 before you can use it.
- Step 2: Open the Connection to Oracle Key Vault
 After you have configured the database to use Oracle Key Vault for TDE key
 management, you must open the connection to Oracle Key Vault before you can use it.

11

Using Transparent Data Encryption with Other Oracle Features

You can use Oracle Data Encryption with other Oracle features, such as Oracle Data Guard or Oracle Real Application Clusters.

- How Transparent Data Encryption Works with Export and Import Operations
 Oracle Data Pump can export and import tables that contain encrypted columns, as well
 as encrypt entire dump sets.
- How Transparent Data Encryption Works with Oracle Data Guard
 An Oracle Data Guard primary database and secondary secondary database can share
 both a TDE wallet and an external keystore.
- How Transparent Data Encryption Works with Oracle Real Application Clusters
 Oracle Real Application Clusters (Oracle RAC) nodes can share both a TDE wallets and
 an external keystore.
- How Transparent Data Encryption Works with SecureFiles
 SecureFiles, which stores LOBS, has three features: compression, deduplication, and encryption.
- How Transparent Data Encryption Works with Oracle Call Interface
 Transparent Data Encryption does not have any effect on the operation of Oracle Call Interface (OCI).
- How Transparent Data Encryption Works with Editions
 Transparent Data Encryption does not have any effect on the Editions feature of Oracle Database.
- Configuring Transparent Data Encryption to Work in a Multidatabase Environment
 Each Oracle database on the same server (such as databases sharing the same Oracle
 binary but using different data files) must access its own TDE keystore.

11.1 How Transparent Data Encryption Works with Export and Import Operations

Oracle Data Pump can export and import tables that contain encrypted columns, as well as encrypt entire dump sets.

- About Exporting and Importing Encrypted Data
 You can use Oracle Data Pump to export and import tables that have encrypted columns.
- Exporting and Importing Tables with Encrypted Columns
 You can export and import tables with encrypted columns using the
 ENCRYPTION=ENCRYPTED_COLUMNS_ONLY setting.
- Using Oracle Data Pump to Encrypt Entire Dump Sets
 Oracle Data Pump can encrypt entire dump sets, not just Transparent Data Encryption columns.

Using Oracle Data Pump with Encrypted Data Dictionary Data
 Oracle Data Pump operations provide protections for encrypted passwords and other encrypted data.

11.1.1 About Exporting and Importing Encrypted Data

You can use Oracle Data Pump to export and import tables that have encrypted columns.

For both software and external keystores, the following points are important when you must export tables containing encrypted columns:

- Sensitive data should remain unintelligible during transport.
- Authorized users should be able to decrypt the data after it is imported at the destination.

When you use Oracle Data Pump to export and import tables containing encrypted columns, it uses the ENCRYPTION parameter to enable encryption of data in dump file sets. The ENCRYPTION parameter allows the following values:

- ENCRYPTED_COLUMNS_ONLY: Writes encrypted columns to the dump file set in encrypted format
- DATA ONLY: Writes all of the data to the dump file set in encrypted format
- METADATA ONLY: Writes all of the metadata to the dump file set in encrypted format
- ALL: Writes all of the data and metadata to the dump file set in encrypted format
- NONE: Does not use encryption for dump file sets

11.1.2 Exporting and Importing Tables with Encrypted Columns

You can export and import tables with encrypted columns using the <code>ENCRYPTION=ENCRYPTED_COLUMNS_ONLY</code> setting.

1. Ensure that the keystore is open before you attempt to export tables containing encrypted columns.

If you are exporting data in a pluggable database (PDB), then ensure that the wallet is open in the PDB. If you are exporting into the root, then ensure that the wallet is open in the root.

To find if the keystore is open, query the STATUS column of the $V\$ENCRYPTION_WALLET$ view. If you must open the keystore, then run the following SQL statement:

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY TDE_wallet_password [CONTAINER = ALL | CURRENT];
```

The <code>TDE_wallet_password</code> setting is the password for the keystore. The keystore must be open because the encrypted columns must be decrypted using the TDE table keys, which requires access to the TDE master encryption key. The columns are reencrypted using a password, before they are exported.

2. Run the EXPDP command, using the ENCRYPTION_PASSWORD parameter to specify a password that is used to encrypt column data in the export dump file set.

The following example exports the <code>employee_data</code> table. The <code>ENCRYPTION_PWD_PROMPT = YES</code> setting enables you to prompt for the password interactively, which is a recommended security practice.

```
expdp hr TABLES=employee_data DIRECTORY=dpump_dir
DUMPFILE=dpcd2be1.dmp ENCRYPTION=ENCRYPTED_COLUMNS_ONLY
ENCRYPTION_PWD_PROMPT = YES
Password: password for hr
```

3. To import the exported data into the target database, ensure that you specify the same password that you used for the export operation, as set by the <code>ENCRYPTION_PASSWORD</code> parameter.

The password is used to decrypt the data. Data is reencrypted with the new TDE table keys generated in the target database. The target database must have the keystore open to access the TDE master encryption key. The following example imports the employee data table:

```
impdp hr TABLES=employee_data DIRECTORY=dpump_dir
DUMPFILE=dpcd2be1.dmp
ENCRYPTION_PWD_PROMPT = YES
Password: password for hr
```

11.1.3 Using Oracle Data Pump to Encrypt Entire Dump Sets

Oracle Data Pump can encrypt entire dump sets, not just Transparent Data Encryption columns.

While importing, you can use either the password or the keystore TDE master encryption key to decrypt the data. If the password is not supplied, then the TDE master encryption key in the keystore is used to decrypt the data. The keystore must be present and open at the target database. The open keystore is also required to reencrypt column encryption data at the target database.

You can use the <code>ENCRYPTION_MODE=TRANSPARENT</code> setting to transparently encrypt the dump file set with the TDE master encryption key stored in the keystore. A password is not required in this case. The keystore must be present and open at the target database, and it must *contain* the TDE master encryption key from the *source* database for a successful decryption of column encryption metadata during an import operation.

The open keystore is also required to reencrypt column encryption metadata at the target database. If a keystore already exists on the target database, then you can export the current TDE master encryption key *from* the keystore of the source database and import it *into* the keystore of the target database.

• Use the <code>ENCRYPTION_MODE</code> parameter to specify the encryption mode.

<code>ENCRYPTION_MODE=DUAL</code> encrypts the dump set using the TDE master encryption key stored in the keystore and the password provided.

For example, to use dual encryption mode to export encrypted data:

```
expdp hr DIRECTORY=dpump_dir1
DUMPFILE=hr_enc.dmp
ENCRYPTION=all
ENCRYPTION_PASSWORD=encryption_password
ENCRYPTION_PWD_PROMPT=yes
ENCRYPTION_ALGORITHM=AES256
ENCRYPTION_MODE=dual
```


Password: password_for_hr Encryption Password: password for encryption

Related Topics

- Exporting and Importing the TDE Master Encryption Key
 You can export and import the TDE master encryption key in different ways.
- Oracle Database Utilities
- Creating an Encrypted Column in an External Table
 The external table feature enables you to access data in external sources as if the data were in a database table.

11.1.4 Using Oracle Data Pump with Encrypted Data Dictionary Data

Oracle Data Pump operations provide protections for encrypted passwords and other encrypted data.

When you enable the encryption of fixed-user database passwords in a source database, then an Oracle Data Pump export operation dump stores a known invalid password for the database link password. This password is in place instead of the encrypted password that the export operation extracts from the database. An ORA-39395: Warning: object <database link name> requires password reset after import warning message is displayed as a result. If you import data into an Oracle Database 18c or later database, then this same warning appears when the database link object with its invalid password is created in the target database. When this happens, you must reset the database link password, as follows:

ALTER DATABASE LINK database_link_name CONNECT TO schema_name IDENTIFIED BY password;

To find information about the database link, you can query the V\$DBLINK dynamic view.

When the encryption of fixed-user database passwords has been disabled in a source database, then there are no changes to Data Pump. The obfuscated database link passwords are exported and imported as in previous releases.

In this case, Oracle recommends the following:

- Set the ENCRYPTION_PASSWORD parameter on the expdp command so that you can further protect the obfuscated database link passwords.
- Set the ENCRYPTION_PWD_PROMPT parameter to YES so that the password can be entered interactively from a prompt, instead of being echoed on the screen.

Both the <code>ENCRYPTION_PASSWORD</code> and the <code>ENCRYPTION_PWD_PROMPT</code> parameters are available in import operations. <code>ENCRYPTION_PWD_PROMPT</code> is only available with the <code>expdp</code> and <code>impdp</code> command-line clients, whereas <code>ENCRYPTION_PASSWORD</code> is available in both the command-line clients and the <code>DBMS_DATAPUMP PL/SQL</code> package.

During an import operation, whether the keystore is open or closed affects the behavior of whether or not an encryption password must be provided. If the keystore was open during the export operation and you provided an encryption password, then you do not need to provide the password during the import operation. If the keystore is closed during the export operation, then you must provide the password during the import operation.

Related Topics

- Oracle Database Reference
- Oracle Database Utilities

11.2 How Transparent Data Encryption Works with Oracle Data Guard

An Oracle Data Guard primary database and secondary secondary database can share both a TDE wallet and an external keystore.

- About Using Transparent Data Encryption with Oracle Data Guard
 For both TDE wallets and external keystores, Oracle Data Guard supports Transparent
 Data Encryption (TDE).
- Encryption of Tablespaces in an Oracle Data Guard Environment
 You can control tablespace encryption in the primary and standby databases in an Oracle Data Guard environment.
- Configuring TDE and Oracle Key Vault in an Oracle Data Guard Environment
 You can configure Oracle Data Guard in a multitenant environment so that it can work with TDE and Oracle Key Vault.
- Configuring TDE Wallet-Based Transparent Data Encryption in Oracle Data Guard You can configure wallet-based Transparent Data Encryption (TDE) in an Oracle Data Guard environment.
- Migrating a TDE Wallet in an Oracle Data Guard Environment to Oracle Key Vault
 After you have configured TDE wallet-based Transparent Data Encryption (TDE) in an
 Oracle Data Guard environment, you can migrate primary and standby databases to
 Oracle Key Vault, without downtime.
- Enabling a PDB to Have an Isolated Keystore in an Oracle Data Guard Environment
 In an Oracle Data Guard environment, to enable a PDB to have an isolated keystore on
 the standby, you must manually perform the configuration.
- Uncoupling the Standby Database from the Primary Database Online Encryption Process
 You can use the DB_RECOVERY_AUTO_REKEY initialization parameter to control how
 Transparent Data Encryption (TDE) rekey operations are performed in an Oracle Data
 Guard environment.

11.2.1 About Using Transparent Data Encryption with Oracle Data Guard

For both TDE wallets and external keystores, Oracle Data Guard supports Transparent Data Encryption (TDE).

If the primary database uses TDE, then each standby database in a Data Guard configuration must have a copy of the encryption keystore from the primary database. If you reset the TDE master encryption key in the primary database, then you must copy the keystore from the primary database that contains the TDE master encryption key to each standby database.

Note the following:

Re-key operations with wallet-based TDE will cause the Managed Recovery Process (MRP) on the standby databases to fail because the new TDE master encryption key is

- not yet available. In order to circumvent this problem, you can configure TDE wallet encryption in an Oracle Data Guard environment.
- Encrypted data in log files remains encrypted when data is transferred to the standby database. Encrypted data also stays encrypted during transit.

Related Topics

- Merging TDE Wallets
 You can merge TDE wallets in a variety of ways.
- Configuring TDE Wallet-Based Transparent Data Encryption in Oracle Data Guard You can configure wallet-based Transparent Data Encryption (TDE) in an Oracle Data Guard environment.

11.2.2 Encryption of Tablespaces in an Oracle Data Guard Environment

You can control tablespace encryption in the primary and standby databases in an Oracle Data Guard environment.

- About the Encryption of Tablespaces in an Oracle Data Guard Environment
 In an Oracle Data Guard environment, you can control the automatic encryption of
 tablespaces in both the primary and standby databases, for on-premises and
 Oracle Cloud Infrastructure (OCI) environments.
- Configuring the Encryption of Tablespaces in an Oracle Data Guard Environment
 To configure the hybrid encryption of tablespaces, you must set the
 TABLESPACE ENCRYPTION initialization parameter.
- Encrypting an Existing Tablespace in Oracle Data Guard with Online Conversion To encrypt an existing tablespace in an Oracle Data Guard environment with online conversion, use ALTER TABLESPACE with the ONLINE and ENCRYPT clauses.

11.2.2.1 About the Encryption of Tablespaces in an Oracle Data Guard Environment

In an Oracle Data Guard environment, you can control the automatic encryption of tablespaces in both the primary and standby databases, for on-premises and Oracle Cloud Infrastructure (OCI) environments.

To control the encryption of new tablespaces, you set the TABLESPACE_ENCRYPTION initialization parameter.

Oracle recommends that you encrypt primary databases. However, because encryption requirements may vary depending on the site, you can use the <code>TABLESPACE_ENCRYPTION</code> parameter to configure a mixed encryption environment for on-premises and in-Cloud environments.

Note the following about using the TABLESPACE ENCRYPTION parameter:

- Redo decryption takes place at the redo transport level.
- If you do not have an Advanced Security Option (ASO) license, which includes
 Transparent Data Encryption, then you can configure an un-encrypted on premises primary database to have an encrypted standby database in Oracle
 Cloud Infrastructure (OCI). Even after a role transition (planned or unplanned), the

new on-premises standby database remains un-encrypted, while the primary database in OCI is encrypted. See the Oracle Database Product Management YouTube video Hybrid Oracle Data Guard without Transparent Data Encryption (TDE) License.

• If the ENCRYPT_NEW_TABLESPACES setting that you choose conflicts with the TABLESPACE ENCRYPTION setting, then TABLESPACE ENCRYPTION takes precedence.

Note:

In Oracle Database releases 19.16 and 23ai, the <code>ENCRYPT_NEW_TABLESPACES</code> was deprecated, to be replaced with <code>TABLESPACE ENCRYPTION</code>.

- You must set TABLESPACE ENCRYPTION in the CDB root, not in any PDBs.
- The default TABLESPACE_ENCRYPTION setting for OCI databases is AUTO_ENABLE. The setting is mandatory, and any changes to it are ignored.
- The default TABLESPACE_ENCRYPTION setting for on-premises databases is MANUAL ENABLE.

In an Oracle Data Guard environment that uses on-premises databases and Oracle Base Database Service or Oracle Exadata Cloud (ExaCS), you can configure tablespace encryption in either of the following scenarios:

- Encrypt the tablespace in the Cloud standby database but not in the on-premises primary database: When an unencrypted on-premises primary database creates an unencrypted tablespace, adds a data file, or updates a table, then the redo is not encrypted. However, when the encrypted Cloud standby database applies the redo, it ensures that the tablespace or data file is created, or that the block is updated, and are all encrypted in the Cloud. After the switchover operation, if the encrypted Cloud primary database adds an implicitly encrypted tablespace or data file, or updates a table, then the tablespace is encrypted. The unencrypted on-premises standby database must decrypt the redo, create an unencrypted tablespace or data file, and then ensure that the block is not encrypted on-premises.
- Encrypt the tablespace in the Cloud primary database but not in the on-premises standby database: When an encrypted Cloud primary database creates an implicitly encrypted tablespace, adds a data file, or updates a table, then the redo is also encrypted. The unencrypted on-premises standby database must decrypt the redo and ensure that the tablespace and data file are created, or the updated files are all unencrypted. After the switchover operation, if the unencrypted on-premises primary database adds an unencrypted tablespace or data file, or updates a table, then the redo is not encrypted. The encrypted Cloud standby database adds an encrypted tablespace or data file, and then ensures that the block is encrypted in the Cloud.

For example, if you want to use <code>TABLESPACE_ENCRYPTION</code> in a configuration that followed the best practice of having both on-premises and OCI databases encrypted, then you would set <code>TABLESPACE_ENCRYPTION</code> to <code>AUTO_ENABLE</code> for both the on-premises and OCI databases. Alternatively, if the on-premises database is not encrypted in a hybrid disaster recovery configuration with Oracle Base Database Service or Oracle <code>ExaCS</code>, for example, you could set <code>TABLESPACE_ENCRYPTION</code> to <code>DECRYPT_ONLY</code>. The OCI database is set to <code>AUTO_ENABLE</code> by default.

See also the video Hybrid Oracle Data Guard without Transparent Data Encryption (TDE) License.

11.2.2.2 Configuring the Encryption of Tablespaces in an Oracle Data Guard Environment

To configure the hybrid encryption of tablespaces, you must set the TABLESPACE ENCRYPTION initialization parameter.

- 1. Log in to the CDB root of the primary or the standby database instance by using SQL*Plus with the SYSDBA administrative privilege.
 - You cannot set the TABLESPACE_ENCRYPTION parameter in a pluggable database (PDB).
- 2. Set the TABLESPACE ENCRYPTION initialization parameter as follows:

```
ALTER SYSTEM SET TABLESPACE_ENCRYPTION = 'value' SCOPE = SPFILE SID = '*';
```

In this specification, replace value with one of the following settings:

- AUTO_ENABLE encrypts all new tablespaces if the database is licensed for Oracle Advanced Security. This is the default setting for Cloud databases. Note the following:
 - If an existing tablespace is not encrypted, then the database writes a warning to the alert log.
 - Encrypted tablespaces cannot be converted to unencrypted tablespaces.
 In all Oracle Cloud Infrastructure (OCI) databases (including BaseDB, ExaDB-D, ExaDB-D@Azure, ExaDB-C@C, and ADB-C@C), encrypted tablespaces cannot be converted to unencrypted tablespaces.
 - Because all tablespaces must be encrypted in the Cloud, setting this
 parameter to DECRYPT_ONLY or MANUAL_ENABLE on a Cloud database will
 result in an error message.
 - In the primary database, this setting encrypts the new tablespace with an encryption key.
 - In a standby database, this setting adds a key to the new tablespace and encrypts all blocks.
- DECRYPT_ONLY prevents new tablespaces from being encrypted. Use this
 setting if you do not have a TDE license for your on-premises primary
 database that you want to protect with an encrypted standby database in OCI.
 See the Hybrid Oracle Data Guard without Transparent Data Encryption (TDE)
 License video. This setting is designed for sites that do not have the Advanced
 Security Option.
- MANUAL_ENABLE enables you to selectively encrypt tablespaces if the database
 is licensed for Oracle Advanced Security. This is the default for both onpremises primary and standby databases and it uses the same behavior as in
 previous Oracle Database releases.

In an Oracle Real Application Clusters (Oracle RAC) environment, set <code>TABLESPACE_ENCRYPTION</code> to the same value for all instances of the primary database, and for all instances of the standby database. Because the default value is <code>MANUAL_ENABLE</code>, Oracle recommends that during an upgrade to the current release of Oracle Database, until all database instances are rolled over and

upgraded, to not change TABLESPACE_ENCRYPTION for any of these database instances. When all the database instances are upgraded, then you can modify the TABLESPACE ENCRYPTION parameter.

- 3. Depending on how you set TABLESPACE ENCRYPTION, do the following:
 - TABLESPACE ENCRYPTION=AUTO ENABLE:
 - Set the master encryption key on the primary database for the root, if you have not done so already.
 - Set master encryption keys on all the PDBs associated with this root, if you have not done so already.
 - Copy the wallet from the primary database to the standby database.
 - TABLESPACE_ENCRYPTION=DECRYPT_ONLY: Set the master encryption keys on the primary database for the root and all the PDBs, and then copy the wallet to the standby database before creating any new tablespaces.

Note the following with regard to rekey operations:

- Modifying the TABLESPACE_ENCRYPTION parameter does not affect master key rotation operations.
 - If a tablespace key rotation is triggered on the primary database, then the standby database will attempt to rotate the key for the tablespace as well. However if the standby tablespace is unencrypted and does not have a key, then it will generate an error because there is no key to regenerate. If the standby tablespace is unencrypted but it has inherited a key from primary because of the DECRYPT_ONLY setting, then the key will be rotated. In either case, it does not affect the unencrypted tablespace.
- Both the master encryption key and the tablespace key rotation can only be performed on the primary database.
- When a tablespace key rotation is performed on the primary database, then the standby database will attempt to rotate the key for the tablespace as well. However if the standby tablespace is unencrypted, then the rekey operation attempt will generate an error, because there is no key to regenerate.

Related Topics

- Encryption Conversions for Existing Offline Tablespaces
 You can perform offline encryption conversions by using the ALTER TABLESPACE SQL
 statement OFFLINE, ENCRYPT, and DECRYPT clauses.
- Configuring a TDE Wallet and TDE Master Encryption Key for United Mode
 In united mode, the TDE wallet resides in the CDB root but the master keys from this
 wallet are available for the PDBs that have their TDE wallets in united mode.
- Configuring a TDE Wallet and TDE Master Encryption Key in Isolated Mode In isolated mode, the TDE wallet is associated with a PDB.

11.2.2.3 Encrypting an Existing Tablespace in Oracle Data Guard with Online Conversion

To encrypt an existing tablespace in an Oracle Data Guard environment with online conversion, use ALTER TABLESPACE with the ONLINE and ENCRYPT clauses.

1. Connect to the united mode CDB root or isolated mode PDB as a user who has been granted the SYSDBA administrative privilege.

You must have the SYSDBA administrative privilege to work with the SYSTEM and SYSAUX tablespaces. Otherwise, connect with the SYSKM administrative privilege.

2. Ensure that the COMPATIBLE initialization parameter is set to 12.2.0.0 or later.

You can use the Show Parameter command to check the current setting of a parameter.

3. Ensure that the database is open in read-write mode.

You can query the STATUS column of the V\$INSTANCE dynamic view to find if a database is open and the OPEN_MODE column of the V\$DATABASE view to find if it in read-write mode.

4. If necessary, open the database in read-write mode.

```
ALTER DATABASE OPEN READ WRITE;
```

5. Ensure that the auxiliary space is at least the same size as the largest data file of this tablespace.

This size requirement is because Oracle Database performs the conversion one file at a time. For example, if the largest data file of the tablespace is 32 GB, then ensure that you have 32 GB of auxiliary space. To find the space used by a data file, query the BYTES or BLOCKS column of the V\$DATAFILE dynamic performance view.

6. Optionally, in the CDB root of the standby database, set the DB_RECOVERY_AUTO_REKEY parameter to OFF to prevent the standby from falling behind due to the additional computing resources that are needed to encrypt the standby databases. (Use this step if the standby databases are not powerful enough to handle the additional load of encryption.)

This setting prevents the standby recovery from performing an automatic rekey operation on every data file, but it will remember the new key that the primary database used.

For example:

```
ALTER SYSTEM SET DB RECOVERY AUTO REKEY = OFF SCOPE = BOTH;
```

7. As a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege, create and open a master encryption key.

For example:

```
ADMINISTER KEY MANAGEMENT CREATE KEYSTORE 'TDE_wallet_location' IDENTIFIED BY TDE_wallet_password;
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
TDE_wallet_password;
ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY TDE_wallet_password WITH BACKUP;
```

8. Run the ALTER TABLESPACE statement using the ENCRYPTION and ENCRYPT clauses to perform the encryption.

For example, for a non-Oracle managed files tablespace named users:

```
ALTER TABLESPACE USERS ENCRYPTION ONLINE ENCRYPT FILE_NAME_CONVERT = ('users.dbf', 'users enc.dbf');
```

In this example:

- ENCRYPTION ONLINE ENCRYPT sets the statement to encrypt the tablespace USERS while it is online and encrypts with the AES256 encryption algorithm (and XTS cipher mode) by default. For the SYSTEM tablespace, you can use the ENCRYPT clause to encrypt the tablespace, but you cannot specify an encryption algorithm because it is encrypted with the existing database key the first time. After encrypting the SYSTEM tablespace, use the REKEY clause to specify the algorithm.
- FILE_NAME_CONVERT specifies one or more pairs of data files that are associated with the tablespace. The first name in the pair is an existing data file, and the second name is for the encrypted version of this data file, which will be created after the ALTER TABLESPACE statement successfully runs. If the tablespace has more than one data file, then you must process them all in this statement. Note the following:
 - Separate each file name with a comma, including multiple pairs of files. For example:

```
FILE_NAME_CONVERT = ('users1.dbf', 'users1_enc.dbf', 'users2.dbf',
'users2 enc.dbf')
```

You can specify directory paths in the FILE_NAME_CONVERT clause. For example, the following clause converts and moves the matching files of the tablespace from the dbs directory to the dbs/enc directory:

```
FILE NAME CONVERT = ('dbs', 'dbs/enc')
```

The FILE_NAME_CONVERT clause recognizes patterns. The following example converts the data files users_1.dbf and users_2.dbf to users_enc1.dbf and users_enc2.dbf:

```
FILE NAME CONVERT = ('users', 'users enc')
```

- In an Oracle Data Guard environment, include the name of the standby database data file in the FILE NAME CONVERT settings.
- If you are using Oracle-managed file mode, then the new file name is internally assigned, so this file name should not affect your site's file-naming standards. If you are using non-Oracle-managed file mode and if you omit the <code>FILE_NAME_CONVERT</code> clause, then Oracle Database internally assigns an auxiliary file name, and then later renames it back to the original name. This enables the encryption process to use the name that you had originally given the file to be encrypted. The renaming operation is effectively creating another copy of the file, hence it is slower than explicitly including the <code>FILE_NAME_CONVERT</code> clause. For better performance, include the <code>FILE_NAME_CONVERT</code> clause.
- You can find the data files for a tablespace by querying the V\$DATAFILE or V\$DATAFILE HEADER dynamic views.

By default, data files are in the <code>\$ORACLE_HOME/dbs</code> directory. If the data files are located there, then you do not have to specify a path.

- 9. Monitor the standby's STATUS column in the V\$ENCRYPTED TABLESPACE dynamic view.
- 10. If you had set the DB_RECOVERY_AUTO_REKEY to OFF, when V\$ENCRYPTED_TABLESPACE in the standby database shows ENCRYPTING (or REKEYING if the tablespace is already encrypted), run the one of the following statements on the standby:
 - Run ALTER TABLESPACE ENCRYPTION FINISH ENCRYPT to encrypt the tablespaces of the standby database.
 - Run ALTER TABLESPACE ENCRYPTION FINISH REKEY to rekey the already encrypted tablespaces in the standby database.

After you complete the conversion, you can check the encryption status by querying the STATUS column of the V\$ENCRYPTED_TABLESPACES dynamic view. The ENCRYPTIONALG column of this view shows the encryption algorithm that is used. If the conversion process was interrupted, then you can resume it by running ALTER TABLESPACE with the FINISH clause. For example, if the primary data file converts but the standby data file does not, then you can run ALTER TABLESPACE ... FINISH on the standby database for the standby data files.

Related Topics

- Best Practice after DBCA Creates an Encrypted Database
 After DBCA has created an encrypted stand-alone or Oracle Data Guard primary
 and standby database, you can implement Transparent Data Encryption (TDE)
 best practices.
- Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption To set the COMPATIBLE initialization parameter, you must edit the initialization parameter file for the database instance.
- Finishing an Interrupted Online Encryption Conversion
 If an online encryption process is interrupted, then you can complete the conversion by rerunning the ALTER TABLESPACE statement using the FINISH clause.

11.2.3 Configuring TDE and Oracle Key Vault in an Oracle Data Guard Environment

You can configure Oracle Data Guard in a multitenant environment so that it can work with TDE and Oracle Key Vault.

The following scenario shows the configuration with Oracle Key Vault in a single-instance, multitenant Oracle Data Guard environment with one physical standby database. The version for the primary and standby databases must be release 21.3 or later. To complete this procedure, you must perform each step in the sequence shown. After you complete the procedure, Oracle Data Guard will use Oracle Key Vault for TDE key management exclusively, and there will be no TDE wallet on your database servers. Oracle recommends that you monitor the alert logs of both primary and standby databases.

1. On both the primary and standby databases, run the <code>opatch lspatches</code> command to check the patch release.

```
$ORACLE HOME/OPatch/opatch lspatches
```

Output similar to the following appears:

```
35149778; RHP RELEASE UPDATE 21.10.0.0.0 (35149778)
35134943; OCW RELEASE UPDATE 21.10.0.0.0 (35134943)
35134934; Database Release Update : 21.10.0.0.230418 (35134934)
```

2. Download the Oracle Key Vault deployment script that the Oracle Key Vault administrators prepared to enable database administrators to automatically register their Oracle databases with Oracle Key Vault.

Oracle Key Vault RESTful Services Administrator's Guide has an example of how to create a script to automatically enroll Oracle databases as endpoints. The

deployment scripts reside on a shared file system from which database administrators can download. There are two different versions of these deployment scripts. The primary zip file is for the primary database, and the secondary zip file is for all standby databases. You can use these scripts for an Oracle Data Guard or an Oracle RAC environment.

Another component that the Oracle Key Vault administrators prepare and add to the deployment script is a configuration file that contains all details for the deployment scripts to connect to Oracle Key Vault.

- 3. Copy the two deployment scripts (primary.zip and secondary.zip) that an Oracle Key Vault administrator created for database administrators to download from a shared location.
 - a. Copy the primary.zip file to the primary database.

```
$ scp user@ip_address:/path/to/file/primary.zip .
```

b. Copy the secondary.zip file to the standby database.

```
$ scp user@ip address:/path/to/file/secondary.zip .
```

4. On their respective servers, extract the zip files.

```
$ unzip primary.zip
$ unzip secondary.zip
```

5. Run the primary-run-me.sh and secondary-run-me.sh scripts, which contain the commands for the RESTful API to run in Oracle Key Vault.

The Oracle Key Vault RESTful services will run these commands in order to register this database in Oracle Key Vault with unique wallet and endpoint names.

a. Primary database: For example:

```
$ more primary-run-me.sh
#!/bin/bash
export EP NAME=${ORACLE SID^^} on ${HOSTNAME/.*}
export WALLET NAME=${ORACLE SID^^}
curl -Ok --tlsv1.2 https://Oracle Key Vault IP address:5695/
okvrestclipackage.zip
unzip -Voj okvrestclipackage.zip lib/okvrestcli.jar -d ./lib
cat > /home/oracle/deploy-primary.sh << EOF</pre>
#!/bin/bash
mkdir -pv ${ORACLE BASE}/product/okv
okv manage-access wallet create --wallet ${WALLET NAME} --unique FALSE
okv admin endpoint create --endpoint ${EP NAME} --description "$HOSTNAME, $
(hostname -i)"
    --type ORACLE DB --platform LINUX64 --subgroup "USE CREATOR SUBGROUP" --
unique FALSE --strict-ip-check TRUE
okv manage-access wallet set-default --wallet ${WALLET NAME} --endpoint $
{EP NAME}
expect << _EOF
    set timeout 120
    spawn okv admin endpoint provision --endpoint ${EP NAME} --location $
{ORACLE BASE}/product/okv --auto-login FALSE
    expect "Enter Oracle Key Vault endpoint password: "
    send "change-on-install\r"
    expect eof
```


_EOF

b. Standby database: For example:

```
$ more secondary-run-me.sh
$ more run-me.sh
#!/bin/bash
export EP NAME=${ORACLE SID^^} on $(hostname -s)
export WALLET NAME=${ORACLE SID^^}
curl -Ok --tlsv1.2 https://Oracle Key Vault IP address:5695/
okvrestclipackage.zip
unzip -oj okvrestclipackage.zip lib/okvrestcli.jar -d ./lib
cat > /home/oracle/deploy-standby.sh << EOF</pre>
#!/bin/bash
okv admin endpoint create --endpoint ${EP NAME} --description "$
(hostname -f) $(hostname -i)" --subgroup "USE CREATOR SUBGROUP" --unique
FALSE
okv admin endpoint update --endpoint ${EP NAME} --strict-ip-check TRUE
okv manage-access wallet set-default --wallet ${WALLET NAME} --endpoint $
{EP NAME}
expect << EOF
    set timeout 120
    spawn okv admin endpoint provision --endpoint ${EP NAME} --
location /etc/ORACLE/KEYSTORES/${ORACLE UNQNAME^^}}/okv --auto-login FALSE
    expect "Enter Oracle Key Vault endpoint password: "
    send "change-on-install\r"
    expect eof
EOF
EOF
```

6. Create the following directories on the primary database and the standby database.

For example:

```
$ mkdir -pv /u01/opt/oracle/product/okv
$ mkdir -pv /u01/opt/oracle/product/tde
$ mkdir -pv /u01/opt/oracle/product/tde seps
```

In this specification:

- The /u01/opt/oracle/product directory will be defined as WALLET_ROOT in a later step.
- /u01/opt/oracle/product/okv is the installation directory for the Oracle Key Vault client software. Depending on how the TDE_CONFIGURATION parameter is set, the Oracle Database will look for the Oracle Key Vault client software in wallet root/okv.
- /u01/opt/oracle/product/tde will store an auto-login wallet, which only
 contains the future Oracle Key Vault password, enabling an auto-login Oracle
 Key Vault configuration. Depending on how TDE_CONFIGURATION is set, the
 Oracle Database will look for the TDE wallet or an auto-open wallet for Oracle
 Key Vault, in wallet root/tde.
- /u01/opt/oracle/product/tde_seps will store an auto-login wallet, which
 only contains the future Oracle Key Vault password. This will hide the Oracle
 Key Vault password from the SQL*Plus command line and potentially from the
 database administrator to enforce separation of duties between Oracle
 database administrators and Oracle Key Vault administrators.

- 7. Run the RESTful API on the primary database first, because the deployment script on the standby databases depends on the presence of the shared virtual wallet in Oracle Key Vault that the script on the primary database creates.
 - Primary database:

```
$ ./deploy-primary.sh
```

Standby databases:

```
$ ./deploy-standby.sh
```

- **8.** Perform the following steps on the primary and the standby.
 - a. On the primary and standby databases, run the root.sh script to deploy the PKCS#11 library.

```
# /u01/opt/oracle/product/okv/bin/root.sh
```

The following output should appear:

```
Creating directory: /opt/oracle/extapi/64/hsm/oracle/1.0.0/
Copying PKCS library to /opt/oracle/extapi/64/hsm/oracle/1.0.0/
Setting PKCS library file permissions
```

b. As root, or with sudo privileges, create the following directories

These directories must be owned by root, have 755 as their file and directory permissions, and there must not be softlinks. The Oracle Key Vault versions are fictitious and are used to explain the functionality.

```
$ sudo sh -c 'mkdir -pvm755 /opt/oracle/extapi/64/pkcs11/okv/lib/
{21.6,21.7}'
```

c. Move the PKCS#11 library from the legacy directory in to the new directory that you just created that matches you current Oracle Key Vault version (for example 21.6):

```
$ sudo sh -c 'mv -v /opt/oracle/extapi/64/hsm/oracle/1.0.0/
liborapkcs.so /opt/oracle/extapi/64/pkcs11/okv/lib/21.6/'
```

d. Confirm the new tree structure.

```
$ tree -n /opt/oracle/extapi/64
```

e. As a user with the ALTER SYSTEM privilege, run the following statement on the primary and standby databases:

```
ALTER SYSTEM SET PKCS11_LIBRARY_LOCATION = '/opt/oracle/extapi/64/pkcs11/okv/lib/21.6/liborapkcs.so' SCOPE = SPFILE;
```

- f. Shut down the primary, shut down the standby, then start the standby and the primary (in this order) to apply the configuration changes.
- g. At this stage, from now on, after upgrading the Oracle Key Vault server and client, your database does not need to restart to load the updated PKCS#11 library. Instead, after the updated PKCS#11 library has been moved into /opt/oracle/extapi/64/pkcs11/okv/lib/21.7/liborapkcs.so, execute as a user with the SYSKM privilege:

```
ADMINISTER KEY MANAGEMENT
SWITCHOVER TO LIBRARY '/opt/oracle/extapi/64/pkcs11/okv/lib/21.7/
```



```
liborapkcs.so'
FOR ALL CONTAINERS;
```

9. Run the okvutil changepwd command to change the password for the wallet that you installed, starting from the primary database and then to the standby.

Because all database administrators downloaded the same deployment script, all databases have the same password into Oracle Key Vault. This step enables each database to have a unique password.

```
\ /u01/opt/oracle/product/okv/bin/okvutil changepwd -t wallet -l /u01/opt/oracle/product/okv/ssl/
```

```
Enter wallet password: default_password
Enter new wallet password: Oracle_Key_Vault_password
Confirm new wallet password: Oracle_Key_Vault_password
Wallet password changed successfully
```

- **10.** On the primary and standby databases, run the following statements.
 - a. Run the following statement to add the Oracle Key Vault password as a secret into an auto-open wallet to replace the Oracle Key Vault password in the SQL*Plus command line with EXTERNAL STORE.

```
ADMINISTER KEY MANAGEMENT ADD SECRET 'Oracle_Key_Vault_password' FOR CLIENT 'OKV_PASSWORD' TO LOCAL AUTO LOGIN KEYSTORE '/u01/opt/oracle/product/tde seps';
```

b. Run the following statement to add the Oracle Key Vault password as a secret into an auto-open wallet to enable auto-open Oracle Key Vault.

```
ADMINISTER KEY MANAGEMENT ADD SECRET 'Oracle_Key_Vault_password' FOR CLIENT 'OKV_PASSWORD'
TO LOCAL AUTO LOGIN KEYSTORE '/u01/opt/oracle/product/tde';
```

c. Optionally, change the database default algorithm from AES256 to any other supported algorithm.

In Oracle Database 23ai, the default algorithm has been changed to AES256. If you would like it to any another of the supported algorithms, then you must change it before the first ADMINISTER KEY MANAGEMENT CREATE KEYSTORE or ADMINISTER KEY MANAGEMENT SET KEY OPERATION.

```
ALTER SYSTEM SET "TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM" = 'AES256' SCOPE = BOTH;
```

d. Configure the primary and standby databases to always encrypt new tablespaces:

```
ALTER SYSTEM SET TABLESPACE_ENCRYPTION = 'value' SCOPE = SPFILE SID = '*';
```

e. In the primary and standby databases, define the ${\tt WALLET_ROOT}$ static initialization parameter:

```
ALTER SYSTEM SET WALLET ROOT = '/u01/opt/oracle/product' SCOPE = SPFILE;
```

- f. Restart the primary and standby databases so that the preceding ALTER SYSTEM SET WALLET_ROOT and ALTER SYSTEM SET TABLESPACE_ENCRYPTION statements take effect.
- g. After the database restarts, configure TDE to use Oracle Key Vault as the first keystore and the auto-open wallet in WALLET_ROOT/tde as the secondary keystore.

Run the following statement in both the primary and standby databases:

```
ALTER SYSTEM SET TDE_CONFIGURATION = "KEYSTORE_CONFIGURATION=OKV|FILE" SCOPE = BOTH;
```

11. In the primary database, create your first TDE master encryption keys in Oracle Key Vault.

Check the alert.log of the standby database. The managed recovery process (MRP) should not be stopped, since the standby database finds the correct master key in the shared virtual wallet in Oracle Key Vault.

a. **Primary root container:** Set the first master encryption key.

For all ADMINISTER KEY MANAGEMENT statements that do not change the TDE configuration, the password will be replaced by EXTERNAL STORE. This enables separation of duties between the database administrators and the Oracle Key Vault administrators because the Oracle Key Vault administrators do not need to share the Oracle Key Vault password with the database administrators.

```
sqlplus sys as syskm
Enter password: password

ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY EXTERNAL STORE
CONTAINER = CURRENT;
```

b. All primary PDBs: Set the first, tagged, master key for each open PDB. The benefit of tagging the PDB keys is that they can later be easily identified to belong to a certain PDB.

```
SELECT ' ADMINISTER KEY MANAGEMENT SET KEY
USING TAG '''||UPPER(SYS_CONTEXT('USERENV', 'CON_NAME'))||' '||TO_CHAR
(SYS_EXTRACT_UTC (SYSTIMESTAMP),
'YYYY-MM-DD HH24:MI:SS"Z"')||''' FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE;'
AS "SET KEY COMMAND" FROM DUAL;
```

c. Run the generated output of this SELECT statement.

For example:

```
ADMINISTER KEY MANAGEMENT SET KEY USING TAG 'pdb_name date time' IDENTIFIED BY EXTERNAL STORE;
```

- **12.** Perform the following steps in the root container.
 - a. Optionally, encrypt the USERS tablespace in the root container. While technically possible, you should not encrypt the SYSTEM, SYSAUX, TEMP, and UNDO tablespaces of the root container.

For example:

```
ALTER TABLESPACE USERS ENCRYPTION ONLINE USING 'AES256' ENCRYPT;
```

- **b.** Observe the alert.log of the standby database to confirm that the USERS tablespace there is also encrypted.
- c. As a user with the SYSKM administrative privilege, encrypt the data dictionary with the AES256 algorithm.

```
ALTER DATABASE DICTIONARY ENCRYPT CREDENTIALS CONTAINER = CURRENT;
```

13. Encrypt the PDB tablespaces:

a. Encrypt the USERS, SYSTEM, SYSAUX and all application tablespaces in the PDBs.

Encrypting the TEMP and UNDO tablespaces is optional because data from encrypted tablespaces is tracked and automatically encrypted before being written into TEMP or UNDO.

```
ALTER TABLESPACE USERS ENCRYPTION ONLINE [USING 'algorithm'] ENCRYPT;
ALTER TABLESPACE SYSTEM ENCRYPTION ONLINE ENCRYPT;
ALTER TABLESPACE SYSAUX ENCRYPTION ONLINE [USING 'algorithm'] ENCRYPT;
```

The SYSTEM tablespace can only be encrypted with the database default algorithm, which is AES256 unless it has been changed in step 10. If you want to encrypt the SYSTEM tablespace with another algorithm, then you can rekey the SYSTEM tablespace, for example: For example:

```
ALTER TABLESPACE SYSTEM ENCRYPTION ONLINE USING 'any_supported_algorithm' REKEY;
```

Observe the alert.log of the standby database to confirm the encryption and rekey operations are applied there as well.

b. Optionally, encrypt the UNDO and TEMP tablespaces.

For example, to encrypt an UNDO tablespace named UNDOTBS1:

```
ALTER TABLESPACE UNDOTBS1 ENCRYPTION ONLINE [USING 'algorithm'] ENCRYPT;
```

You cannot use the ALTER TABLESPACE statement to encrypt an existing TEMP tablespac. To encrypt a TEMP tablespace, you must create a new one and encrypt it. First, extract the DDL that was used to create the original TEMP tablespace.

```
SELECT DBMS_METADATA.GET_DDL ('TABLESPACE', 'TEMP') FROM DBA_TEMP_FILES;
```

Modify the output so that tempfile and tablespace name are different. For example:

```
CREATE TEMPORARY TABLESPACE "TEMP_ENC"

TEMPFILE '/u01/opt/oracle/oradata/${ORACLE_SID}/${PDB-NAME}/
temp01_enc.dbf'

SIZE 146800640 AUTOEXTEND ON NEXT 655360

MAXSIZE 32767M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 1048576

ENCRYPTION [USING 'algorithm'] ENCRYPT;
```

You only need to add the ENCRYPTION [USING 'algorithm'] ENCRYPT clause if you need to apply an algorithm other than the default. Omitting the ENCRYPTION [USING 'algorithm'] ENCRYPT clause will automatically encrypt the TEMP tablespace with the default algorithm.

Next, make this new encrypted TEMP tablespace the default temp tablespace of this PDB, and then drop the old clear-text TEMP tablespace.

```
ALTER DATABASE DEFAULT TEMPORARY TABLESPACE TEMP_ENC; DROP TABLESPACE TEMP INCLUDING CONTENTS AND DATAFILES;
```

14. Optionally, create a tablespace and table in the primary database PDB.

When you create the tablespace in the primary database without encryption keywords in that statement. It will be encrypted with AES128 by default unless the database default algorithm has been changed in an earlier step, when you changed the database default algorithm from AES128 to either AES192 or AES256.

```
CREATE TABLESPACE protected DATAFILE SIZE 50M;

CREATE TABLE SYSTEM.TEST TABLESPACE protected
AS SELECT * FROM DBA OBJECTS;
```

15. Confirm that you can select from the table that is stored in an encrypted tablespace.

```
SELECT COUNT(*), OWNER FROM SYSTEM.TEST GROUP BY OWNER ORDER BY 1 DESC;
```

16. On the **primary** and **standby** databases, run the following statements in the root:

```
SELECT c.name AS PDB_NAME, t.name
AS TBS_NAME, e.ENCRYPTIONALG
AS ALG, e.STATUS from v$tablespace t, v$encrypted_tablespaces e, v$containers c
WHERE e.ts# = t.ts# AND e.con_id = t.con_id and e.con_id = c.con_id order by
e.con_id, t.name;
```

PDB_NAME	TBS_NAME	ALG	STATUS
CDB\$ROOT	USERS	AES256	NORMAL
FINPDB19C	PROTECTED01	AES256	NORMAL
FINPDB19C	SYSAUX	AES256	NORMAL
FINPDB19C	SYSTEM	AES256	NORMAL
FINPDB19C	TEMP_ENC	AES256	NORMAL
FINPDB19C	UNDOTBS1	AES256	NORMAL
FINPDB19C	USERS	AES256	NORMAL

Note that the TEMP tablespace is not listed in the output of the standby databases.

- 17. Optionally, validate the configuration.
 - Perform an Oracle Data Guard switchover between the primary and standby databases.

See Oracle Data Guard Concepts and Administration.

Perform the following steps in the new primary database.

b. Select from the encrypted table in your PDB.

Because there is an auto-open connection into Oracle Key Vault, the following query does not require that you enter the Oracle Key Vault password.

```
SELECT COUNT(*), OWNER FROM SYSTEM.TEST
GROUP BY OWNER
ORDER BY 1 DESC;
24 rows selected.
```


c. Rekey the PDB.

```
SELECT ' ADMINISTER KEY MANAGEMENT SET KEY
USING TAG '''||UPPER(SYS_CONTEXT('USERENV', 'CON_NAME'))||' '||TO_CHAR
(SYS_EXTRACT_UTC (SYSTIMESTAMP),
'YYYY-MM-DD HH24:MI:SS"Z"')||'''
FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE;'
AS "RE-KEY COMMAND" FROM DUAL;
```

d. Run the generated output of this SELECT statement.

For example:

```
ADMINISTER KEY MANAGEMENT SET KEY USING TAG 'pdb_name date time' IDENTIFIED BY EXTERNAL STORE;
```

e. In the root container, as a user who has the SYSKM administrative privilege, rekey the data dictionary.

```
ALTER DATABASE DICTIONARY REKEY CREDENTIALS CONTAINER = CURRENT;
```

f. Perform another Oracle Data Guard switchover.

See Oracle Data Guard Concepts and Administration.

g. Select from the encrypted table in your PDB.

Because there is an auto-open connection into Oracle Key Vault, the following query does not require that you enter the Oracle Key Vault password.

```
SELECT COUNT(*), OWNER FROM SYSTEM.TEST
GROUP BY OWNER
ORDER BY 1 DESC;
24 rows selected.
```

h. Rekey the PDB.

```
SELECT ' ADMINISTER KEY MANAGEMENT SET KEY
USING TAG '''||UPPER(SYS_CONTEXT('USERENV', 'CON_NAME'))||' '||TO_CHAR
(SYS_EXTRACT_UTC (SYSTIMESTAMP),
'YYYY-MM-DD HH24:MI:SS"Z"')||'''
FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE;'
AS "RE-KEY COMMAND" FROM DUAL;
```

i. Run the generated output of this sselecttatement.

For example:

```
ADMINISTER KEY MANAGEMENT SET KEY USING TAG 'pdb_name date time' IDENTIFIED BY EXTERNAL STORE;
```

11.2.4 Configuring TDE Wallet-Based Transparent Data Encryption in Oracle Data Guard

You can configure wallet-based Transparent Data Encryption (TDE) in an Oracle Data Guard environment.

The following scenario shows how to configure TDE wallet-based TDE in a single-instance, multitenant Oracle Data Guard environment with one physical standby

database. The version for the primary and standby databases must be release 19.6 or later. To complete this procedure, you must perform each step in the sequence shown. After you complete this configuration, you can migrate the primary and standby databases from the TDE wallet to Oracle Key Vault. Oracle recommends that you monitor the alert logs of both primary and standby databases.

1. In the primary and standby databases, create the directories that are needed for a TDE wallet-based TDE configuration.

For example:

```
# mkdir -pv /etc/ORACLE/KEYSTORES/finance/tde_seps
# cd /etc
# chown -Rv oracle:oinstall ./ORACLE
# chmod -Rv 700 ./ORACLE
```

2. In the CDB root of the primary and standby databases, as a user who has the ALTER SYSTEM privilege, run the following statements in SQL*Plus to set the appropriate parameters.

```
ALTER SYSTEM SET WALLET_ROOT = '/etc/ORACLE/KEYSTORES/${ORACLE_SID}'
SCOPE = SPFILE;
ALTER SYSTEM SET TABLESPACE ENCRYPTION = 'AUTO ENABLE' SCOPE = SPFILE;
```

- 3. Restart the primary and standby databases.
- **4.** Set the following parameters in the primary and standby databases:

```
ALTER SYSTEM SET TDE_CONFIGURATION = "KEYSTORE_CONFIGURATION=FILE" SCOPE = BOTH;
```

- 5. Configure tablespace encryption.
 - a. On the primary database, as a user with the SYSKM privilege, create a password-protected and a (local) auto-open TDE wallet.

When you create this keystore, Oracle Database automatically creates the $\mbox{WALLET_ROOT/tde}$ directory.

```
ADMINISTER KEY MANAGEMENT CREATE KEYSTORE IDENTIFIED BY TDE_wallet_password;

ADMINISTER KEY MANAGEMENT CREATE LOCAL AUTO_LOGIN KEYSTORE FROM KEYSTORE IDENTIFIED BY TDE wallet password;
```

b. Enable separation of duties by hiding the TDE wallet password in another (local) auto-open wallet to replace the keystore password with EXTERNAL STORE for those ADMINISTER KEY MANAGEMENT commands that do not change the TDE configuration in the primary and all standby databases:

```
ADMINISTER KEY MANAGEMENT ADD SECRET 'TDE_wallet_password'
FOR CLIENT 'TDE_WALLET'
TO LOCAL AUTO LOGIN KEYSTORE '/etc/ORACLE/KEYSTORES/finance/tde seps';
```


6. Set the first key in the CDB\$ROOT container of the primary database.

ADMINISTER KEY MANAGEMENT SET KEY FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE WITH BACKUP CONTAINER = CURRENT;

7. Log in to each open primary PDB and set the first, tagged key.

```
SELECT 'ADMINISTER KEY MANAGEMENT SET KEY USING TAG
'''||UPPER(SYS_CONTEXT('USERENV', 'CON_NAME'))||' '||TO_CHAR
(SYS_EXTRACT_UTC (SYSTIMESTAMP), 'YYYY-MM-DD HH24:MI:SS"Z"')||'''
FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE
WITH BACKUP;' AS "SET KEY COMMAND";
```

8. Copy the TDE wallets from primary to standby databases.

The local auto-open TDE wallet of the primary cannot be opened on the standby, so it is excluded from the copy process. For example:

```
$ rsync -rvpt --exclude '*.sso' /etc/ORACLE/KEYSTORES/finance/tde/
standby host:/etc/ORACLE/KEYSTORES/finance/tde/
```

9. On the CDB root of the standby, as a user who has the SYSKM administrative privilege, create a local auto-login TDE wallet:

```
ADMINISTER KEY MANAGEMENT CREATE LOCAL AUTO_LOGIN KEYSTORE FROM KEYSTORE IDENTIFIED BY TDE wallet password;
```

10. On the CDB root of the primary, encrypt the users tablespace.

```
ALTER TABLESPACE USERS ENCRYPTION ONLINE MODE 'XTS' ENCRYPT;
```

Encrypting the SYSTEM and SYSAUX tablespaces in the root container is optional because those tablespaces do not normally contain sensitive application data from the PDBs.

11. As a user with the SYSKM administrative privilege, encrypt the credentials of named user database links in the root container.

```
ALTER DATABASE DICTIONARY ENCRYPT CREDENTIALS CONTAINER = CURRENT;
```

12. As a user with the ALTER TABLESPACE privilege, encrypt the SYSTEM, SYSAUX, USERS, and all sensitive application tablespaces in the PDB.

```
ALTER TABLESPACE USERS ENCRYPTION ONLINE MODE 'XTS' ENCRYPT;
ALTER TABLESPACE SYSTEM ENCRYPTION ONLINE MODE 'XTS' ENCRYPT;
ALTER TABLESPACE SYSAUX ENCRYPTION ONLINE MODE 'XTS' ENCRYPT;
```

- 13. Optionally, encrypt the UNDO and TEMP tablespaces in the primary PDBs.
 - a. Perform the following ALTER TABLESPACE statement:

ALTER TABLESPACE UNDOTBS1 ENCRYPTION ONLINE MODE 'XTS' ENCRYPT;

b. Create a new encrypted TEMP tablespace with the same parameters that were applied to the original TEMP tablespace.

You cannot use the ALTER TABLESPACE statement to encrypt an existing TEMP tablespace, so you must create a new one.

First, extract the DDL that was used to create the original TEMP tablespace.

```
SELECT DBMS_METADATA.GET_DDL ('TABLESPACE', 'TEMP') FROM DBA TEMP FILES;
```

Second, modify the output so that the tempfile and tablespace names are different. For example:

```
CREATE TEMPORARY TABLESPACE "TEMP_ENC"

TEMPFILE '/u01/opt/oracle/oradata/${ORACLE_SID}/${PDB-NAME}/
temp01_enc.dbf'

SIZE 146800640 AUTOEXTEND ON NEXT 655360

MAXSIZE 32767M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 1048576
ENCRYPTION MODE 'XTS' ENCRYPT;
```

c. Make the new encrypted TEMP tablespace the default TEMP tablespace:

```
ALTER DATABASE DEFAULT TEMPORARY TABLESPACE TEMP ENC;
```

d. Drop the old clear-text TEMP tablespace:

```
DROP TABLESPACE TEMP INCLUDING CONTENTS AND DATAFILES;
```

e. Rename the new TEMP tablesplace.

```
ALTER TABLESPACE TEMP ENC RENAME TO TEMP;
```

14. Optionally, create a small sample tablespace (which will be encrypted with AES256 even if no ENCRYPTION syntax is given), and create a copy of the DBA_OBJECTS table in this encrypted sample tablespace.

```
CREATE TABLESPACE PROTECTED DATAFILE SIZE 50M;
CREATE TABLE SYSTEM.TEST TABLESPACE PROTECTED AS SELECT * FROM DBA OBJECTS;
```

15. Optionally, select from the encrypted copy of the DBA OBJECTS table.

For example:

```
SELECT OWNER, COUNT(*) FROM SYSTEM.test GROUP BY OWNER ORDER BY 2 DESC; 20 rows selected.
```

16. Connect to the CDB root of the primary and standby databases and confirm.

```
SELECT C.NAME AS PDB_NAME, T.NAME AS TBS_NAME, E.ENCRYPTIONALG AS ALG, E.CIPHERMODE AS "MODE", E.STATUS FROM V$TABLESPACE T, V$ENCRYPTED_TABLESPACES E, V$CONTAINERS C
```



```
WHERE E.TS# = T.TS# AND E.CON_ID = T.CON_ID AND E.CON_ID = C.CON_ID ORDER BY E.CON ID, T.NAME;
```

Output similar to the following should appear:

PDB_NAME	TBS_NAME	ALG	MODE	STATUS
				_
CDB\$ROOT	USERS	AES256	XTS	NORMAL
FINPDB23ai	PROTECTED	AES256	CFB	NORMAL
FINPDB23ai	SYSAUX	AES256	XTS	NORMAL
FINPDB23ai	SYSTEM	AES256	XTS	NORMAL
FINPDB23ai	TEMP	AES256	XTS	NORMAL
FINPDB23ai	UNDOTBS1	AES256	XTS	NORMAL
FINPDB23ai	USERS	AES256	XTS	NORMAL

The standby does not have a TEMP tablespace, so it will not be listed here. The PROTECTED tablespace is encrypted because TABLESPACE_ENCRYPTION was set to AUTO ENABLE; it also applies the database default cipher mode, CFB.

17. Run the following statement to change the cipher mode for the PROTECTED tablespace to XTS:

```
ALTER TABLESPACE PROTECTED ENCRYPTION ONLINE MODE 'XTS' REKEY;
```

Now all tablespaces are encrypted with MODE = 'XTS'.

- **18.** Connect to the dgmgrl utility on the standby as a user who has the SYSDG administrative privilege.
- 19. Perform a switchover operation.

```
DGMGRL> switchover to 'standby database' wait 5;
```

20. To confirm the auto-open TDE wallet functionality, select from encrypted data (for example, the copy of the DBA_OBJECTS table in the PDB) of the new primary database after the role switch.

For example:

```
SELECT OWNER, COUNT(*) FROM SYSTEM.test GROUP BY OWNER ORDER BY 2 DESC;
```

20 rows selected.

21. As a user who has the SYSKM administrative privilege, perform a rekey operation of the data dictionary.

ALTER DATABASE DICTIONARY REKEY CREDENTIALS CONTAINER = CURRENT;

Oracle recommends that you create and then use the key. This way, the managed recovery process on the standby database is not interrupted due to unknown TDE master encryption keys. In the new primary PDB, run the following statement:

```
ADMINISTER KEY MANAGEMENT CREATE KEY FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE WITH BACKUP;
```

22. Copy the TDE wallet to the standby, excluding the local auto-open keystores, and automatically deleting the obsolete local auto-open keystore on the standby side.

For example:

```
$ rsync -rvpt --exclude '*.sso' --delete-excluded /etc/ORACLE/KEYSTORES/
finance/tde/ SanDiego:/etc/ORACLE/KEYSTORES/finance/tde/
```

23. On the standby, re-create a local auto-open TDE wallet from the updated password-protected keystore so that the new key is immediately available to the standby database when needed.

```
ADMINISTER KEY MANAGEMENT CREATE LOCAL AUTO_LOGIN KEYSTORE FROM KEYSTORE IDENTIFIED BY TDE wallet password;
```

24. Use the following SELECT statement to create an ADMINISTER KEY MANAGEMENT USE KEY command that inserts the correct key-id, and adds a tag to the key:

```
SELECT 'ADMINISTER KEY MANAGEMENT

USE KEY '''||KEY_ID||'''

USING TAG '''||SYS_CONTEXT('USERENV', 'CON_NAME')||' '||

TO_CHAR (SYS_EXTRACT_UTC (SYSTIMESTAMP), 'YYYY-MM-DD HH24:MI:SS"Z"')||'''

FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE

WITH BACKUP;' AS "USE KEY COMMAND"

FROM V$ENCRYPTION_KEYS

WHERE TAG IS NULL;
```

The USE KEY clause updates the associations in the TDE wallet, so the updated password-protected wallet is copied to the standby, again excluding the local auto-open TDE wallet and deleting the obsolete local auto-open keystore on the receiving standby side, for example, with the following command:

```
$ rsync -rvpt --exclude '*.sso' --delete-excluded /etc/ORACLE/KEYSTORES/
finance/tde/ SanDiego:/etc/ORACLE/KEYSTORES/finance/tde/
```

25. On the CDB root of the primary, recreate the local auto-login TDE wallet.

```
ADMINISTER KEY MANAGEMENT CREATE LOCAL AUTO_LOGIN KEYSTORE FROM KEYSTORE IDENTIFIED BY TDE wallet password;
```

26. Using the dgmgrl utility, perform a switchover operation to the standby.

For example:

```
DGMGRL> switchover to 'standby database' wait 5;
```


27. Optionally, to confirm the auto-open functionality, select from an encrypted table (for example, the copy of the DBA OBJECTS table).

```
SELECT OWNER, COUNT(*) FROM SYSTEM.test GROUP BY OWNER ORDER BY 2 DESC;
```

20 rows selected.

11.2.5 Migrating a TDE Wallet in an Oracle Data Guard Environment to Oracle Key Vault

After you have configured TDE wallet-based Transparent Data Encryption (TDE) in an Oracle Data Guard environment, you can migrate primary and standby databases to Oracle Key Vault, without downtime.

The following scenario shows how to configure one endpoint for each of the primary and standby databases, and then migrate the primary and standby databases from a TDE wallet to Oracle Key Vault. This scenario uses a single-instance, multitenant Oracle Data Guard environment with one physical standby database. The version for the primary and standby databases must be release 19.6 or later. To complete this procedure, you must perform each step in the sequence shown. See *Oracle Key Vault RESTful Services Administrator's Guide* for how an Oracle Key Vault administrator can create these files, which are later used by database administrators to automatically onboard their databases into Oracle Key Vault.

1. Copy the primary deployment script to the primary database host.

For example:

```
$ rsync -v 192.168.1.29:/directory_on_shared_server/OKVdeploy-DG-
primary.tgz .
```

2. Copy the secondary deployment script to all standby database hosts.

For example:

3. On the primary and standby database hosts, extract the archive.

```
$ tar -xzvf OKVdeploy-DG*
```

4. On the primary database, run the primary-run-me.sh script.

This script creates the deployment script (okv-ep.sh), which contains unique names for the wallet and endpoint that it creates in Oracle Key Vault for the primary database.

```
$ /primary-run-me.sh
```

```
% Total % Received % Xferd Average Speed Time Time
Time Current
Dload Upload Total Spent
Left Speed
```



```
100 3750k 100 3750k
                             0 13.5M
                                           0 --:--:--
13.5M
Archive: okvrestclipackage.zip
 inflating: ./lib/okvrestcli.jar
#!/bin/bash
mkdir -pv /etc/ORACLE/KEYSTORES/finance/okv
okv manage-access wallet create --wallet FINANCE --unique FALSE
okv admin endpoint create --endpoint FINANCE on SanDiego --description
"SanDiego.us.oracle.com, 192.168.56.193"
  --subgroup "USE CREATOR SUBGROUP" --unique FALSE --strict-ip-check TRUE
okv manage-access wallet set-default --wallet FINANCE --endpoint
FINANCE on SanDiego
expect << EOF
   set timeout 120
    spawn okv admin endpoint provision --endpoint FINANCE on SanDiego --
location /etc/ORACLE/KEYSTORES/finance/okv --auto-login FALSE
   expect "Enter Oracle Key Vault endpoint password: "
    send "change-on-install\r"
    expect eof
EOF
```

5. On the standby databases, run the secondary-run-me.sh script.

This script creates the deployment script (okv-ep.sh), which contains unique names for the endpoint that it creates in Oracle Key Vault for the standby databases. Note that the standby endpoint uses the primary wallet as its default wallet, so that primary and standby databases have access to same key material.

```
$ ./secondary-run-me.sh
            % Received % Xferd Average Speed
                                                                Time
  % Total
                                              Time
                                                       Time
Current
                                Dload Upload Total Spent
                                                               Left
Speed
100 3750k 100 3750k
                                          0 --:--:--
                     0
                             0 16.0M
16.1M
Archive: okvrestclipackage.zip
 inflating: ./lib/okvrestcli.jar
#!/bin/bash
mkdir -pv /etc/ORACLE/KEYSTORES/finance/okv
okv admin endpoint create --endpoint FINANCE on Phoenix
  --description "Phoenix.us.oracle.com, 192.168.56.194"
 --subgroup "USE CREATOR SUBGROUP"
  --unique FALSE
  --strict-ip-check TRUE
okv manage-access wallet set-default --wallet FINANCE --endpoint
FINANCE on Phoenix
expect << EOF
   set timeout 120
    spawn okv admin endpoint provision --endpoint FINANCE on Phoenix --
location /etc/ORACLE/KEYSTORES/finance/okv --auto-login FALSE
   expect "Enter Oracle Key Vault endpoint password: "
    send "change-on-install\r"
    expect eof
EOF
```


6. On the primary database host, run the okv-ep.sh script.

This script creates a wallet and endpoint for the primary database in Oracle Key Vault. It makes the wallet the default wallet of that endpoint. The following <code>okv</code> admin <code>endpoint</code> provision command downloads and installs the Oracle Key Vault endpoint software into the existing directory, <code>WALLET ROOT/okv</code>.

```
$ ./deploy-OKV.sh

{
    "result" : "Success",
    "value" : {
        "status" : "PENDING",
        "locatorID" : "87E59AAD-0AAA-4AE8-ADCE-01D283ECE9C4"
    }
}

{
    "result" : "Success",
    "value" : {
        "status" : "PENDING",
        "locatorID" : "D13CC460-7BFB-451D-9998-DA387FC45783"
    }
}

{
    "result" : "Success"
}
spawn okv admin endpoint provision --endpoint finance_on_SanDiego --location /etc/ORACLE/KEYSTORES/finance/okv --auto-login FALSE Enter Oracle Key Vault endpoint password:
    {
        "result" : "Success"
}
```

7. On the standby database hosts, run the okv-ep.sh script.

This script creates an endpoint for the standby database in Oracle Key Vault. It makes the primary wallet the default wallet of that endpoint. The following <code>okv</code> admin <code>endpoint</code> provision command downloads and installs the Oracle Key Vault endpoint software into the existing directory <code>WALLET ROOT/okv</code>.

```
$ ./deploy-OKV.sh

{
    "result" : "Success",
    "value" : {
        "status" : "PENDING",
        "locatorID" : "4208FBB5-5FD4-47EE-B3DB-FA8277BAFB84"
    }
}
{
    "result" : "Success"
}
spawn okv admin endpoint provision --endpoint finance_on_Phoenix --location /etc/ORACLE/KEYSTORES/finance/okv --auto-login FALSE
Enter Oracle Key Vault endpoint password:
```



```
{
    "result" : "Success"
}
```

8. On the primary and standby database hosts, run the root.sh script in the WALLET ROOT/okv/bin.

This script deploys the PKCS#11 library into the correct destination directory.

```
$ sudo /etc/ORACLE/KEYSTORES/finance/okv/bin/root.sh
```

9. On the primary and standby databases, change the default password to a strong password that the database administrator should not know.

This password is the same for all databases that used the deployment script.

```
$ /etc/ORACLE/KEYSTORES/finance/okv/bin/okvutil changepwd -l /etc/ORACLE/
KEYSTORES/finance/okv/ssl/ -t wallet

Enter wallet password: current_endpoint_password
Enter new wallet password: new_endpoint_password
Confirm new wallet password: new_endpoint_password
Wallet password changed successfully
```

10. Optionally, update the endpoint parameters.

This step and the next two steps are optional. By default, the persistent cache is a password-protected wallet that is protected with the endpoint password from the preceding step. With the change in steps 10, 11, and 12, the persistent cache will be protected with a random password, which implies that the persistent cache will expire after database shutdown, and needs to be rebuilt after each database restart. Additionally, the persistent cache expiration time is changed to 4 hours, but the persistent cache refresh window is extended to 21 days.

```
$ okv admin endpoint update --generate-json-input | jq '.service.options
|= ({endpoint} | .endpointConfiguration
|= (.expirePkcs11PersistentCacheOnDatabaseShutdown = "TRUE"
| .pkcs11PersistentCacheRefreshWindow = "P21D"
.pkcs11PersistentCacheTimeout = "PT4H"))'
> ./update-endpoint.json; more ./update-endpoint.json
  "service": {
    "category": "admin",
   "resource": "endpoint",
    "action": "update",
    "options": {
      "endpoint": "#VALUE",
      "endpointConfiguration": {
        "expirePkcs11PersistentCacheOnDatabaseShutdown": "TRUE",
        "pkcs11PersistentCacheRefreshWindow": "P21D",
        "pkcsl1PersistentCacheTimeout": "PT4H"
    }
```



```
}
```

11. Optionally, on the primary, check the status of the endpoints on both the primary and standby databases.

For example, for a primary with an endpoint called finance_on_SanDiego and a standby with an endpoint called finance on Phoenix:

```
$ okv admin endpoint check-status --endpoint finance_on_SanDiego
$ okv admin endpoint check-status --endpoint finance on Phoenix
```

12. After both endpoints are active, apply and re-use the update-endpoint.json file to update all endpoints of the primary and standby databases.:

```
$ okv admin endpoint update --from-json ./update-endpoint.json --
endpoint finance_on_SanDiego
$ okv admin endpoint update --from-json ./update-endpoint.json --
endpoint finance on Phoenix
```

13. On the primary database host, upload the current and retired master encryption keys from the TDE wallet into the virtual wallet in Oracle Key Vault.

For example:

```
$ /etc/ORACLE/KEYSTORES/finance/okv/bin/okvutil upload -l /etc/
ORACLE/KEYSTORES/finance/tde/ -t wallet -g FINANCE -v 3
```

14. In the root of the primary, using SQL*Plus, add the Oracle Key Vault password from step 9 into the TDE wallet to enable an auto-open Oracle Key Vault connection.

```
ADMINISTER KEY MANAGEMENT ADD SECRET 'Oracle_Key_Vault_password'
FOR CLIENT 'OKV_PASSWORD'
FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE WITH BACKUP;
```

15. Copy the updated TDE wallet from the primary database host to the standby database hosts, excluding the local auto-login TDE wallet and deleting the obsolete local auto-login TDE wallet on the standby side.

For example:

```
$ rsync -rvpt --exclude '*.sso' --delete-excluded /etc/ORACLE/
KEYSTORES/finance/tde/ Phoenix:/etc/ORACLE/KEYSTORES/finance/tde/
```

16. On the CDB root of the standby, using SQL*Plus, recreate the local auto-login TDE wallet, and then close it.

```
ADMINISTER KEY MANAGEMENT CREATE LOCAL AUTO_LOGIN KEYSTORE FROM KEYSTORE IDENTIFIED BY TDE_wallet_password;
ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE CONTAINER = ALL;
```

At this stage, the primary and standby databases are ready to be migrated into Oracle Key Vault.

17. In the primary and standby databases, change the TDE_CONFIGURATION dynamic parameter to OKV|FILE.

```
ALTER SYSTEM SET TDE_CONFIGURATION = "KEYSTORE_CONFIGURATION=OKV|FILE" SCOPE = BOTH;
```

18. Run the administer key management...migrate command.

This command decrypts the data encryption keys with the most recent key from the TDE wallet, and re-encrypts them with a new TDE master encryption key that is created in Oracle Key Vault. If this is a container database, then each open PDB will go through these steps. This entails no downtime; the operation lists approximately 10 to 15 seconds for each PDB.

```
ADMINISTER KEY MANAGEMENT SET KEY

IDENTIFIED BY "Oracle_Key_Vault_password"

FORCE KEYSTORE MIGRATE USING "TDE wallet password";
```

19. Add the Oracle Key Vault password, and remove the old TDE wallet password, from the local auto-login wallet that enables to replace the TDE wallet password on the SQL*plus command line with EXTERNAL STORE.

```
ADMINISTER KEY MANAGEMENT ADD SECRET 'Oracle_Key_Vault_password'
FOR CLIENT "OKV_PASSWORD"
TO LOCAL AUTO_LOGIN KEYSTORE '/etc/ORACLE/KEYSTORES/finance/tde_seps';

ADMINISTER KEY MANAGEMENT DELETE SECRET FOR CLIENT 'TDE_WALLET'
FROM LOCAL AUTO LOGIN KEYSTORE '/etc/ORACLE/KEYSTORES/finance/tde seps';
```

20. Now that primary and standby databases have been migrated to Oracle Key Vault, delete the old wallets (only because you have uploaded the keys into Oracle Key Vault in step 13.

```
$ rm -v /etc/ORACLE/KEYSTORES/finance/tde/*
```

21. On the primary and standby databases, create a local auto-login TDE wallet in <code>WALLET_ROOT/tde</code> that only contains the Oracle Key Vault password to enable an auto-login Oracle Key Vault configuration.

For example:

```
ADMINISTER KEY MANAGEMENT ADD SECRET 'Oracle_Key_Vault_password'
FOR CLIENT 'OKV_PASSWORD' TO LOCAL AUTO_LOGIN KEYSTORE '/etc/ORACLE/
KEYSTORES/finance/tde';
```

22. Create a tag for each key that is associated with each PDB.

During migration, Oracle Key Vault created a new key for each PDB, but without a tag. The tag that you create makes it easier to find which key belongs to which PDB. You should give each key a tag that matches the PDB name, and a time stamp.

```
SELECT ' ADMINISTER KEY MANAGEMENT SET TAG '''||SYS_CONTEXT('USERENV', 'CON_NAME')||' '||TO_CHAR (SYS_EXTRACT_UTC (ACTIVATION_TIME), 'YYYY-MM-DD HH24:MI:SS"Z"')||''' FOR '''||KEY_ID||'''
FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE; ' AS "SET TAG COMMAND"
```



```
FROM V$ENCRYPTION_KEYS
WHERE CREATOR_PDBNAME = SYS_CONTEXT('USERENV', 'CON_NAME')
ORDER BY CREATION TIME DESC FETCH FIRST 1 ROWS ONLY;
```

11.2.6 Enabling a PDB to Have an Isolated Keystore in an Oracle Data Guard Environment

In an Oracle Data Guard environment, to enable a PDB to have an isolated keystore on the standby, you must manually perform the configuration.

This is because the ADMINISTER KEY MANAGEMENT command that is run on the primary does not affect the standby. First, you isolate the PDB in the primary database. The ADMINISTER KEY MANAGEMENT ISOLATE KEYSTORE command performs the necessary isolation tasks, such as changing the PDB's TDE_CONFIGURATION parameter to FILE and moving the key from the united mode wallet to the newly created isolated mode wallet. Next, you must perform these same tasks manually on the standby to complete the isolation mode process.

1. If you have not done so you, log in to the CDB root of the primary database, and then isolate the PDB.

```
ADMINISTER KEY MANAGEMENT ISOLATE KEYSTORE

IDENTIFIED BY "new_isolated_pdb_keystore_password"

FROM ROOT KEYSTORE

IDENTIFIED BY "root_keystore_password"

WITH BACKUP;
```

- 2. Log in to the server where the standby database is configured.
- 3. Ensure that there is a directory for the PDB (for example, \$WALLET_ROOT/pdb_guid/tde/).
- 4. Connect to the PDB as a user who has the ALTER SYSTEM privilege.
- 5. Set the KEYSTORE CONFIGURATION parameter for this PDB.

```
ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE" SCOPE=BOTH;
```

- 6. At the command line, from the CDB root, copy the wallet (.p12 and .sso) from the primary database to the standby; place this wallet in the \$WALLET_ROOT/pdb guid/tde/ directory.
- 7. Close and then re-open the CDB root's wallet.

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE FORCE KEYSTORE IDENTIFIED BY root_wallet_password;

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN FORCE KEYSTORE IDENTIFIED BY root_wallet_password;
```

8. Connect to the PDB.

9. Open the wallet in the PDB.

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN FORCE KEYSTORE IDENTIFIED BY pdb wallet password;
```

11.2.7 Uncoupling the Standby Database from the Primary Database Online Encryption Process

You can use the <code>DB_RECOVERY_AUTO_REKEY</code> initialization parameter to control how Transparent Data Encryption (TDE) rekey operations are performed in an Oracle Data Guard environment.

- Set DB RECOVERY AUTO REKEY as follows:
 - ON, which is the default for the standby, enables the standby to automatically perform
 an online tablespace rekey operation as part of the standby media recovery process.
 Be aware that this setting pauses media recovery. If the tablespace is large, then you
 could observe extended standby apply lag. To enable DB RECOVERY AUTO REKEY:

```
ALTER SYSTEM RECOVERY AUTO REKEY = ON;
```

You can set DB_RECOVERY_AUTO_REKEY to ON on primary so that media recovery (for example, a restore from backup) will perform this rekey operation. However, this setting can also slow down media recovery and hence, delay primary open operation.

OFF, which is the default for the primary, does not perform a tablespace rekey operation. This setting enables an extended standby database to avoid lag time during an online conversion, and is designed for large Oracle Data Guard tablespace deployments. This enables the standby recovery to only record the tablespace key information but not perform the rekey operation inline. In the V\$ENCRYPTED_TABLESPACES dynamic view, after the STATUS column value for the corresponding tablespace becomes REKEYING or ENCRYPTING on the standby database, then you can use a standby SQL session to issue an ALTER TABLESPACE ENCRYPTION ONLINE FINISH REKEY|ENCRYPT command to perform the rekey in parallel of media recovery. For example, assuming that the STATUS column will change to REKEYING:

```
ALTER SYSTEM _RECOVERY_AUTO_REKEY = OFF;
...
ALTER TABLESPACE ENCRYPTION ONLINE FINISH REKEY;
```

Related Topics

Oracle Database Reference

11.3 How Transparent Data Encryption Works with Oracle Real Application Clusters

Oracle Real Application Clusters (Oracle RAC) nodes can share both a TDE wallets and an external keystore.

- About Using Transparent Data Encryption with Oracle Real Application Clusters
 Oracle requires a shared TDE wallet for Oracle Real Application Clusters (Oracle
 RAC), or a shared common virtual wallet in Oracle Key Vault among cluster
 instances.
- Configuring TDE in Oracle Real Application Clusters for Oracle Key Vault
 You can configure TDE in Oracle Real Application Clusters (Oracle RAC) on
 Oracle Exadata Cloud at Customer (ExaCC) and other servers for centralized key
 management provided by Oracle Key Vault.

11.3.1 About Using Transparent Data Encryption with Oracle Real Application Clusters

Oracle requires a shared TDE wallet for Oracle Real Application Clusters (Oracle RAC), or a shared common virtual wallet in Oracle Key Vault among cluster instances.

A TDE configuration with Oracle Key Vault uses a network connection from each instance of the database to the external key manager. In Oracle Key Vault, you must create one endpoint for each instance of the Oracle RAC-enabled database, and one virtual wallet for each Oracle RAC-enabled database. Then, make that virtual wallet the default wallet of all endpoints that belong to that database. In an Oracle RAC-enabled Data Guard configuration, all instances (primary and all standby databases) share that one virtual wallet. With this configuration, set key and re-key operations are completely transparent because all participating instances are automatically synchronized. This eliminates the need to manually copy the TDE wallet to each of the other nodes in the cluster.

Oracle does not support the use of individual TDE wallets for each Oracle RAC node. Instead, use shared wallets for TDE in the Oracle RAC environment. This enables all of the instances to access the same shared TDE wallet. If your site uses Oracle Automatic Storage Management Cluster File System (Oracle ACFS), then this is the preferred location for a shared wallet. Directly sharing the wallet in Oracle Automatic Storage Management (Oracle ASM) (for example, +DATA/\$ORACLE_UNQNAME/WALLETS) is an alternative if Oracle ACFS is not available.

Keystore operations (such as opening or closing the keystore, or rekeying the TDE master encryption key) can be issued on any one Oracle RAC instance. Internally, the Oracle database takes care of synchronizing the keystore context on each Oracle RAC node, so that the effect of the keystore operation is visible to all of the other Oracle RAC instances in the cluster. Similarly, when a TDE master encryption key rekey operation takes place, the new key becomes available to each of the Oracle RAC instances. You can perform other keystore operations, such as exporting TDE master encryption keys, rotating the keystore password, merging keystores, or backing up keystores, from a single instance only.

When using a shared file system, ensure that the WALLET_ROOT static system parameter for all of the Oracle RAC instances point to the same shared TDE wallet location, as follows:

```
ALTER SYSTEM SET WALLET_ROOT = '+DATA/DB_NAME' SCOPE = SPFILE SID = '*';

ALTER SYSTEM SET TABLESPACE_ENCRYPTION = 'AUTO_ENABLE' SCOPE = SPFILE SID = '*';

$ srvctl stop database -db DB_NAME -o immediate

$ srvctl start database -db DB_NAME

ALTER SYSTEM SET TDE_CONFIGURATION = "KEYSTORE_CONFIGURATION=OKV" SCOPE = BOTH

SID = '*';
```


Note:

Storing TDE master encryption keys in individual wallets per Oracle Real Application Clusters (Oracle RAC) instance is not supported. As an alternative, use Oracle Key Vault for centralized key management across your on-premises or Cloud-based database deployments, or Oracle Automatic Storage Management (Oracle ASM), or Oracle ASM Cluster File System (Oracle ACFS) to provide local shared wallets.

11.3.2 Configuring TDE in Oracle Real Application Clusters for Oracle Key Vault

You can configure TDE in Oracle Real Application Clusters (Oracle RAC) on Oracle Exadata Cloud at Customer (ExaCC) and other servers for centralized key management provided by Oracle Key Vault.

The following scenario assumes that you have a multitenant two-node Oracle RAC configuration. In this procedure, you must complete the following steps in the order shown. After you have completed this procedure, the Oracle RAC environment will exclusively use Oracle Key Vault for key management for Transparent Data Encryption. This procedure assumes that you have installed the January 2020 (19.6) or later upgrade for Oracle Database release 19c.

Before you begin, monitor the alert logs of your running Oracle RAC database. The Java version that is included in the default Oracle Database release 19c installation can be used to install the Oracle Key Vault client with the RESTful services.

 Download the Oracle Key Vault deployment script that the Oracle Key Vault administrators prepared to enable database administrators to automatically register their Oracle databases with Oracle Key Vault.

Oracle Key Vault RESTful Services Administrator's Guide has an example of how to create a script to automatically enroll Oracle databases as endpoints. The deployment scripts reside on a shared file system from with database administrators can download. There are two different versions of these deployment scripts. One script is for only the first node (which is called lead node in this procedure) and the other script is for all other nodes (which are called secondary nodes in this procedure). You can use these scripts for an Oracle RAC or an Oracle Data Guard environment.

Another component that the Oracle Key Vault administrators prepare and add to the deployment script is a configuration file that contains all details for the deployment scripts to connect to Oracle Key Vault.

- Copy the two deployment scripts (primary.zip and secondary.zip) that an Oracle Key Vault administrator created for database administrators to download from a shared location.
 - a. Copy the primary.zip file to the lead node.

```
$ scp user@ip address:/path/to/file/primary.zip .
```

b. Copy the secondary.zip file to each secondary node.

```
$ scp user@ip address:/path/to/file/secondary.zip .
```


- **3.** Extract the zip files.
 - a. On the lead node: Extract the primary.zip file.

```
$ unzip primary.zip
```

b. On the secondary nodes: Extract the secondary.zip file.

```
$ unzip secondary.zip
```

4. Create the following directories on all nodes:

For example:

```
$ mkdir -pv /u01/opt/oracle/product/okv
$ mkdir -pv /u01/opt/oracle/product/tde
$ mkdir -pv /u01/opt/oracle/product/tde seps
```

In this specification:

- The /u01/opt/oracle/product directory will be defined as WALLET_ROOT in a later step.
- /u01/opt/oracle/product/okv is the installation directory for the Oracle Key Vault client software. Depending on how the TDE_CONFIGURATION parameter is set, the Oracle Database will look for the Oracle Key Vault client software in wallet root/okv.
- /u01/opt/oracle/product/tde will store an auto-login wallet, which only
 contains the future Oracle Key Vault password, enabling an auto-login Oracle
 Key Vault configuration. Depending on how TDE_CONFIGURATION is set, the
 Oracle Database will look for the TDE wallet or an auto-open wallet for Oracle
 Key Vault, in wallet root/tde.
- /u01/opt/oracle/product/tde_seps will store an auto-login wallet, which
 only contains the future Oracle Key Vault password. This will hide the Oracle
 Key Vault password from the SQL*Plus command line and potentially from the
 database administrator to enforce separation of duties between Oracle
 database administrators and Oracle Key Vault administrators.
- 5. Run the primary-run-me.sh and secondary-run-me.sh scripts, which contain the commands for the RESTful API to run in Oracle Key Vault.

The Oracle Key Vault RESTful services will run these commands in order to register this database in Oracle Key Vault with unique wallet and endpoint names.

a. On the lead node: This script creates a shared wallet (for the lead and all secondary nodes) and an endpoint in Oracle Key Vault, associates this endpoint for the lead node with the shared wallet, and downloads and installs the Oracle Key Vault client into an existing installation directory. With the WALLET ROOT configuration, this directory is wallet root/okv.

```
$ more primary-run-me.sh

#!/bin/bash
export EP_NAME=${ORACLE_SID^^}_on_$(hostname -s)
export WALLET_NAME=${ORACLE_UNQNAME^^}${HOSTNAME/[!0-9]/}
curl -Ok https://192.168.1.181:5695/okvrestclipackage.zip --tlsv1.2
unzip -Voj okvrestclipackage.zip lib/okvrestcli.jar -d ./lib
cat > /home/oracle/deploy-OKV.sh << EOF
#!/bin/bash
okv manage-access wallet create --wallet ${WALLET_NAME} --unique FALSE
okv admin endpoint create --endpoint ${EP NAME} --description "$</pre>
```



```
(hostname -f) $(hostname -i)" --subgroup "USE CREATOR SUBGROUP" --unique FALSE
okv admin endpoint update --endpoint ${EP_NAME} --strict-ip-check TRUE
okv manage-access wallet set-default --wallet ${WALLET_NAME} --endpoint $
{EP_NAME}
expect << _EOF
    set timeout 120
    spawn okv admin endpoint provision --endpoint ${EP_NAME} --location /etc/
ORACLE/KEYSTORES/${ORACLE_UNQNAME^^}/okv --auto-login FALSE
    expect "Enter Oracle Key Vault endpoint password: "
    send "change-on-install\r"
    expect eof
    _EOF
EOF</pre>
```

b. Secondary nodes: This script only creates an endpoint for the secondary nodes, associates the endpoint of the secondary nodes with the shared wallet, and downloads and installs the Oracle Key Vault client into the existing installation directory on each secondary node.

```
$ more run-me.sh
#!/bin/bash
export EP NAME=${ORACLE SID^^} on $(hostname -s)
export WALLET NAME=${ORACLE UNQNAME^^}${HOSTNAME//[!0-9]/}
curl -Ok --tlsv1.2 https://<OKV-IP-addr>:5695/okvrestclipackage.zip
unzip -Voj okvrestclipackage.zip lib/okvrestcli.jar -d ./lib
cat > /home/oracle/deploy-OKV.sh << EOF</pre>
#!/bin/bash
okv admin endpoint create --endpoint ${EP NAME} --description "$(hostname -f) $
(hostname -i)" --subgroup "USE CREATOR SUBGROUP" --unique FALSE
okv admin endpoint update --endpoint ${EP NAME} --strict-ip-check TRUE
okv manage-access wallet set-default --wallet ${WALLET NAME} --endpoint $
{EP NAME}
expect << _EOF
   set timeout 120
   spawn okv admin endpoint provision --endpoint ${EP NAME} --location /etc/
ORACLE/KEYSTORES/${ORACLE UNQNAME^^}/okv --auto-login FALSE
   expect "Enter Oracle Key Vault endpoint password: "
    send "change-on-install\r"
    expect eof
EOF
EOF
```

6. After successful installation of the Oracle Key Vault client, run the root.sh script to install the PKCS library on all nodes.

```
# Oracle_Key_Vault_installation_directory/bin/root.sh
```

The following output should appear:

```
Creating directory: /opt/oracle/extapi/64/hsm/oracle/1.0.0/
Copying PKCS library to /opt/oracle/extapi/64/hsm/oracle/1.0.0/
Setting PKCS library file permissions
```

7. Run the Oracle Key Vault okvutil changepwd command on all nodes to change the password for the Oracle Key Vault client that you installed.

Because all database administrators downloaded the same deployment script, all databases have the same password into Oracle Key Vault. This step enables each database to have a unique password.

 $\$ /u01/opt/oracle/product/okv/bin/okvutil changepwd -t wallet -l /u01/opt/oracle/product/okv/ssl/


```
Enter wallet password: default_password
Enter new wallet password: Oracle_Key_Vault_password
Confirm new wallet password: Oracle_Key_Vault_password
Wallet password changed successfully
```

8. On all nodes, add the Oracle Key Vault password into a local auto-login wallet to hide the newly changed password from database administrators.

```
sqlplus c##sec_admin as syskm
Enter password: password

ADMINISTER KEY MANAGEMENT ADD SECRET 'Oracle_Key_Vault_password'
FOR CLIENT 'OKV_PASSWORD'
TO LOCAL AUTO LOGIN KEYSTORE '/u01/opt/oracle/product/tde seps';
```

9. In the root container, run the ALTER SYSTEM statement to set the static WALLET_ROOT parameter to configure the encryption wallet location for all instances:

```
CONNECT / AS SYSDBA

ALTER SYSTEM SET TABLESPACE_ENCRYPTION = 'AUTO_ENABLE' SCOPE = SPFILE SID = '*';

ALTER SYSTEM SET WALLET_ROOT = '/u01/opt/oracle/product/' SCOPE = SPFILE SID - '*'.
```

- **10.** Restart the database.
- 11. In the root container, use the ALTER SYSTEM statement to set the dynamic TDE CONFIGURATION parameter.

For example:

```
ALTER SYSTEM SET TDE_CONFIGURATION = "KEYSTORE_CONFIGURATION=OKV" SCOPE = BOTH SID = '*';
```

12. Optionally, define the database default encryption algorithm after applying Oracle patch 30398099.

By default, Oracle Database applies the AES128 algorithm to encryption clauses that do not specify an encryption algorithm. Patch 30398099 allows you to choose from the AES128, AES192, and AES256 encryption algorithms. If you have applied this patch, then you can run the following command to set the encryption clause:

```
ALTER SYSTEM SET "_TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM" = 'encryption_algorithm'
SCOPE = BOTH SID = '*';
```

13. In the root container, open the keystore, which opens the connection to Oracle Key Vault for the root container and all open PDBs.

Note that the Oracle Key Vault password has been replaced in all subsequent ADMINISTER KEY MANAGEMENT commands with EXTERNAL STORE, because the database automatically retrieves the Oracle Key Vault password from the local auto-login wallet that you created earlier.

```
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY EXTERNAL STORE CONTAINER = ALL;
```

14. In the root container, set the master encryption key.


```
ADMINISTER KEY MANAGEMENT SET KEY
IDENTIFIED BY EXTERNAL STORE
CONTAINER = CURRENT;
```

15. Create and activate a tagged master encryption key in all PDBs in this container.

The benefit of adding tagged master encryption keys to PDBs is that it enables you to easily identify keys that belong to a certain PDB.

a. Connect to each PDB and run the following SELECT statement to create an ADMINISTER KEY MANAGEMENT command that contains the PDB name and time stamp as a tag for the PDB's master encryption key.

```
SELECT ' ADMINISTER KEY MANAGEMENT SET KEY
USING TAG '''||SYS_CONTEXT('USERENV', 'CON_NAME')||' '||
TO_CHAR (SYSDATE, 'YYYY-MM-DD HH24:MI:SS')||'''
IDENTIFIED BY EXTERNAL STORE;' "SET KEY COMMAND" FROM DUAL;
```

b. Run the generated output of this SELECT statement.

For example:

```
ADMINISTER KEY MANAGEMENT SET KEY USING TAG 'pdb_name date time' IDENTIFIED BY EXTERNAL STORE;
```

16. On all nodes, add the Oracle Key Vault password into an auto-login wallet to enable auto-login connection into Oracle Key Vault.

This step is mandatory in Oracle RAC. Having an auto-login connection into Oracle Key Vault is especially important when Oracle RAC nodes are automatically restarted (for example, while applying quarterly release upgrades using the opatchauto patch tool).

```
ADMINISTER KEY MANAGEMENT ADD SECRET 'Oracle_Key_Vault_password' FOR CLIENT 'OKV_PASSWORD' TO LOCAL AUTO LOGIN KEYSTORE '/u01/opt/oracle/product/tde';
```

17. In the root container, run the ALTER SYSTEM statement to change the TDE_CONFIGURATION parameter.

For example:

```
ALTER SYSTEM SET TDE_CONFIGURATION = "KEYSTORE_CONFIGURATION=OKV|FILE" SCOPE = BOTH SID = '*';
```

18. From the root, encrypt sensitive credential data with AES256 for database links in the SYS.LINK\$ and SYS.SCHEDULER\$_CREDENTIAL system tables.

This command requires the SYSKM administrative privilege:

```
sqlplus c##sec_admin as syskm
Enter password: password
ALTER DATABASE DICTIONARY ENCRYPT CREDENTIALS;
```

19. Log in to the PDB and create a tablespace.

For example, to create a tablespace named protected:

```
CREATE TABLESPACE protected DATAFILE SIZE 50M;
```

20. Confirm that the tablespace is encrypted even though the encryption clauses were omitted.

```
SELECT C.NAME AS pdb\_name, T.NAME AS tablespace\_name, E.ENCRYPTIONALG AS ALG FROM V$TABLESPACE T, V$ENCRYPTED TABLESPACES E, V$CONTAINERS C
```



```
WHERE E.TS# = T.TS# AND E.CON_ID = T.CON_ID AND E.CON_ID = C.CON_ID ORDER BY E.CON ID, T.NAME;
```

21. Create a table in the encrypted tablespace that you just created.

For example:

```
CREATE TABLE SYSTEM.test TABLESPACE protected AS SELECT * FROM DBA OBJECTS;
```

22. Select from this table to confirm that you can read encrypted data:

```
SELECT COUNT(*), OWNER FROM SYSTEM.test
GROUP BY OWNER
ORDER BY 1 DESC;
```

23. In the PDBs, encrypt the existing tablespaces.

Optionally, encrypt the SYSTEM, SYSAUX, and USERS tablespaces. If you omit the encryption algorithm, then the default algorithm (AES128, or the algorithm that you specified earlier) is applied.

```
ALTER TABLESPACE tablespace name ENCRYPTION ONLINE ENCRYPT;
```

- 24. Optionally, validate the configuration.
 - a. Confirm that the auto-login for Oracle Key Vault is working.

You can test this by restarting the database, logging into the PDB, and then selecting from the encrypted table. To restart the database:

```
$ srvctl stop database -db database_name -o immediate
$ srvctl start database -db database name
```

After logging in to the PDB, select from the SYSTEM. test table.

```
SELECT COUNT(*), OWNER FROM SYSTEM.test
GROUP BY OWNER
ORDER BY 1 DESC;
```

 Confirm that the master encryption key re-key operations in all open PDBs are successful.

First, as a user who has the SYSKM administrative privilege, run the following SELECT statement to create an ADMINISTER KEY MANAGEMENT command that contains the PDB name and time stamp.

```
SELECT ' ADMINISTER KEY MANAGEMENT SET KEY
USING TAG '''||SYS_CONTEXT('USERENV', 'CON_NAME')||' '||
TO_CHAR (SYSDATE, 'YYYY-MM-DD HH24:MI:SS')||'''
FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE;' "RE-KEY COMMAND" FROM DUAL;
```

Next, run the generated output of this SELECT statement.

```
ADMINISTER KEY MANAGEMENT SET KEY
USING TAG 'pdb_name date time'
FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE;
```

c. From the root container, re-key previously encrypted sensitive credential data in the SYS.LINK\$ and SYS.SCHEDULER\$ CREDENTIAL system tables.

This command requires the SYSKM administrative privilege:

```
ALTER DATABASE DICTIONARY REKEY CREDENTIALS;
```

d. Drop the protected tablespace and its table, test.

DROP TABLESPACE protected INCLUDING CONTENTS AND DATAFILES;

Related Topics

Supported Encryption and Integrity Algorithms
 Oracle supports the AES, ARIA and DES algorithms.

11.4 How Transparent Data Encryption Works with SecureFiles

SecureFiles, which stores LOBS, has three features: compression, deduplication, and encryption.

- About Transparent Data Encryption and SecureFiles
 SecureFiles encryption uses TDE to provide the encryption facility for LOBs.
- Example: Creating a SecureFiles LOB with a Specific Encryption Algorithm

 The CREATE TABLE statement can create a SecureFiles LOB with encryption specified.
- Example: Creating a SecureFiles LOB with a Column Password Specified
 The CREATE TABLE statement can create a SecureFiles LOB with a column password.

11.4.1 About Transparent Data Encryption and SecureFiles

SecureFiles encryption uses TDE to provide the encryption facility for LOBs.

When you create or alter tables, you can specify the SecureFiles encryption or LOB columns that must use the SecureFiles storage. You can enable the encryption for a LOB column by either using the current Transparent Data Encryption (TDE) syntax or by using the ENCRYPT clause as part of the LOB parameters for the LOB column. The DECRYPT option in the current syntax or the LOB parameters turn off encryption.

11.4.2 Example: Creating a SecureFiles LOB with a Specific Encryption Algorithm

The CREATE TABLE statement can create a SecureFiles LOB with encryption specified.

Example 11-1 shows how to create a SecureFiles LOB in a CREATE TABLE statement.

Example 11-1 Creating a SecureFiles LOB with a Specific Encryption Algorithm

```
CREATE TABLE table1 ( a BLOB ENCRYPT USING 'AES256')
LOB(a) STORE AS SECUREFILE (
CACHE
);
```

11.4.3 Example: Creating a SecureFiles LOB with a Column Password Specified

The CREATE TABLE statement can create a SecureFiles LOB with a column password.

Example 11-2 shows an example of creating a SecureFiles LOB that uses password protections for the encrypted column.

All of the LOBS in the LOB column are encrypted with the same encryption specification.

Example 11-2 Creating a SecureFiles LOB with a Column Password Specified

```
CREATE TABLE table1 (a VARCHAR2(20), b BLOB)

LOB(b) STORE AS SECUREFILE (

CACHE

ENCRYPT USING 'AES192' IDENTIFIED BY password
);
```

11.5 How Transparent Data Encryption Works with Oracle Call Interface

Transparent Data Encryption does not have any effect on the operation of Oracle Call Interface (OCI).

For most practical purposes, TDE is transparent to OCI except for the row shipping feature. You cannot use the OCI row shipping feature with TDE because the key to make the row usable is not available at the receipt-point.

11.6 How Transparent Data Encryption Works with Editions

Transparent Data Encryption does not have any effect on the Editions feature of Oracle Database.

For most practical purposes, TDE is transparent to Editions. Tables are always noneditioned objects. TDE Column Encryption encrypts columns of the table. Editions are not affected by TDE tablespace encryption.

11.7 Configuring Transparent Data Encryption to Work in a Multidatabase Environment

Each Oracle database on the same server (such as databases sharing the same Oracle binary but using different data files) must access its own TDE keystore.

Keystores are not designed to be shared among databases. By design, there must be one keystore per database. You cannot use the same keystore for more than one database.

- To configure the use of keystores in a multidatabase environment, use one of the following options:
 - Option 1: Specify the keystore location by individually setting the WALLET_ROOT static initialization parameter and the TDE_CONFIGURATION dynamic initialization parameter (its KEYSTORE_CONFIGURATION attribute set to FILE) for each CDB (or standalone database). You must set the KEYSTORE_CONFIGURATION attribute in order for the WALLET ROOT parameter to work.

For example:

```
WALLET_ROOT = $ORACLE_BASE/admin/db_unique_name TDE CONFIGURATION="KEYSTORE CONFIGURATION=FILE"
```

 Option 2: If WALLET_ROOT and TDE_CONFIGURATION are not set, and if the databases share the same Oracle home, then ensure that the ENCRYPTION_WALLET_LOCATION parameter in sqlnet.ora is not set. By default, sqlnet.ora is located in the \$ORACLE HOME/network/admin directory.

This enables Oracle Database to use the keystore that is located in either the <code>\$ORACLE_BASE/admin/db_unique_name/wallet</code> (assuming <code>\$ORACLE_BASE</code> is set) or the <code>\$ORACLE_HOME/admin/db_unique_name/wallet</code> directory.

Option 3: If options 1 and 2 are not feasible, then use separate sqlnet.ora files, one for each database. Ensure that you correctly set the TNS_ADMIN environment variable to point to the correct database configuration. However, be aware that the ENCRYPTION_WALLET_LOCATION parameter in sqlnet.ora is deprecated, starting with release 19c, in favor of the WALLET_ROOT and TDE_CONFIGURATION initialization parameters.

Caution:

Using a keystore from another database can cause partial or complete data loss.

Related Topics

- Transparent Data Encryption Keystore Search Order
 The search order for the TDE keystore depends on how you have set either the instance initialization parameters, the sqlnet.ora parameters, or the environment variables.
- SQL*Plus User's Guide and Reference

Frequently Asked Questions About Transparent Data Encryption

Users frequently have questions about transparency and performance issues with Transparent Data Encryption.

- Transparency Questions About Transparent Data Encryption
 Transparent Data encryption handles transparency in data in a variety of ways.
- Performance Questions About Transparent Data Encryption
 There are several performance issues to consider when using Transparent Data Encryption.

12.1 Transparency Questions About Transparent Data Encryption

Transparent Data encryption handles transparency in data in a variety of ways.

Security auditors occasionally ask detailed questions about the encryption used by Transparent Data Encryption (TDE). They request information about TDE keys, algorithms, lengths, and keystores and then directly compare to requirements of regulations such as PCI-DSS. This topic contains important details about TDE encryption and key management. This information is current as of Oracle Database 12c (12.1.0.2). It is intended to help TDE customers respond to auditor questions quickly and accurately.

1. Is Transparent Data Encryption compatible with my application software?

Transparent Data Encryption is compatible with applications by default because it does not alter the inbound SQL statements or the outbound SQL query results. Oracle runs internal testing and validation of certain Oracle and third-party application software to capture helpful deployment tips or scripts, and to evaluate performance profiles.

Be aware of the difference between Transparent Data Encryption and the DBMS_CRYPTO PL/SQL package. This package is intended for different customer use cases. It is an API and toolkit solution and as such, it is non-transparent.

2. Is Transparent Data Encryption compatible with other Oracle Database tools and technologies that I am using?

One of the chief benefits of Transparent Data Encryption is its integration with frequently used Oracle Database tools and technologies such as high-availability clusters, storage compression, backup compression, data movement, database backup and restore, and database replication. Specific Oracle technologies that are integrated directly with Transparent Data Encryption include Oracle Real Application Clusters (Oracle RAC), Oracle Recovery Manager (RMAN), Oracle Data Guard, Advanced Compression, Oracle Data Pump, and Oracle GoldenGate, among others. Transparent Data Encryption also has special points of integration with Oracle Exadata that fully use unique features of Oracle-engineered systems.

Transparent Data Encryption also works easily with security features of the Oracle Database. With Transparent Data Encryption, privilege grants, roles, Oracle Database

Vault realms, Virtual Private Database policies, and Oracle Label Security labels remain in effect. You can use these and other security features in tandem with Transparent Data Encryption encryption.

3. Are there any known Transparent Data Encryption limitations or incompatibilities?

- TDE column encryption: TDE column encryption encrypts and decrypts data transparently when data passes through the SQL layer. Some features of Oracle will bypass the SQL layer, and hence cannot benefit from TDE column encryption. The following are known database features that TDE column encryption does not support, and their relevant software version numbers:
 - Materialized View Logs (not supported prior to Oracle Database 11g release 2)
 - Synchronous and asynchronous change data capture for data warehousing (CDC)
 - Transportable Tablespaces
 - LOBs

Note that Secure Files were introduced in Oracle Database 11g release 1, so it is not supported with TDE column encryption prior to that release

• TDE tablespace encryption: TDE tablespace encryption encrypts all content that is stored in the tablespace at the block level in storage, and it generally does not conflict with other database features. TDE tablespace encryption does not have any of the limitations that TDE column encryption has. However, you can use full transportable tablespaces (TTS) with Oracle Data Pump compression and encryption when going from a TDE-encrypted source to a TDE-encrypted destination. You must have an Oracle Database release 12c or later database instance available so that you can use its key export or keystore (wallet) merge capabilities to get the correct master encryption key to the destination database host without having to overwrite the original Oracle wallet file. This process is subject to the standard TTS limitations, and you must remember to check for compatible endianness.

4. What types of keys and algorithms does TDE use?

TDE relies on two distinct sets of encryption keys. The first set of encryption keys are TDE tablespace encryption keys, which are used to transparently encrypt and decrypt stored data. DEKs are generated automatically by the database, stored internally in the database in encrypted form, and managed mostly behind the scenes. One place where end-users interact with DEKs is when selecting the encryption algorithm and key length that TDE will use, which can be 3DES168, AES128, AES192, or AES256. This selection is made independently for each table containing encrypted columns and for each encrypted tablespace. You may also hear DEKs referred to as table keys (column encryption) or tablespace keys (tablespace encryption). The table keys can be used in cipher block chaining (CBC) or Galois/Counter (GCM) mode, and the tablespace keys can be used in used in cipher feedback mode (CFB) or tweakable block ciphertext stealing (XTS) operating mode.

The second set of encryption keys consists of current and historical key encryption keys (KEK), also known as master encryption keys. The master encryption keys are generated automatically by the database, used automatically to encrypt and decrypt DEKs as needed, and stored externally in a protected keystore. Users may interact with the current master encryption key by periodically rekeying it,

modifying certain key attributes, and so forth. Typically, the keystore for master encryption keys is either an Oracle wallet (out-of-the-box solution) or Oracle Key Vault (a specialized key management product). Although the database uses only one TDE master key at a time, all rekeyed master encryption keys are retained in the keystore for long-term recovery of encrypted data backups. Master encryption keys always are AES256. They encrypt and decrypt DEKs using CBC operating mode. For both DEKs and master encryption keys, the underlying key material is not directly exposed. Endusers see only attributes of keys necessary to manage TDE.

5. How are Oracle keystores containing master encryption keys protected?

There are three different types of keystore to consider when you use an Oracle wallet as the keystore for master encryption keys: password-based, auto-login, and local auto-login. All of these keystore externalize master encryption keys, so they are separate from TDE-encrypted data. Oracle recommends that you place wallet files in local or network directories that are protected by tight file permissions and other security measures.

The password-based wallet is an encrypted key storage file (ewallet.p12) that follows the PKCS #12 standard. It is encrypted by a password-derived key according to the PKCS #5 standard. A human user must enter a command containing the password for the database to open the wallet, decrypt its contents, and gain access to keys. The password-based wallet is the default keystore for TDE master keys. In the past, it was encrypted using the 3DES168 encryption algorithm and CBC operating mode. The orapki command convert wallet enables you to convert password-based wallets to AES256 and CBC operating mode. For example, to use the compat_v12 setting to perform the conversion from 3DES to AES256:

```
orapki wallet convert -wallet wallet_location [-pwd password] [-
compat v12]
```

Auto-login wallets (cwallet.sso) optionally are derived from standard password-based wallets for special cases where automatic startup of the database is required with no human interaction to enter a wallet password. When using auto-login wallet, the master password-based wallet must be preserved because it is needed to rekey the master encryption key. In addition to the best practice of storing auto-login wallet in a local or network directory that is protected by tight file permissions, the file contents are scrambled by the database using a proprietary method for added security. A slight variation on the auto-login wallet called local auto-login wallet has similar behavior. One notable difference with local auto-login wallet is that its contents are scrambled using additional factors taken from the host machine where the file was created. This renders the local auto-login wallet unusable on other host machines. Details of the host factors and scrambling technique are proprietary.

6. What is Oracle Key Vault and how does it manage TDE master keys?

Oracle Key Vault centrally manages TDE master keys, Oracle wallets, Java keystores, and more. It helps you to take control of proliferating keys and key storage files. It includes optimizations specifically for TDE and other components of the Oracle stack.

Related Topics

Oracle Database Security Guide

12.2 Performance Questions About Transparent Data Encryption

There are several performance issues to consider when using Transparent Data Encryption.

1. What is the typical performance overhead from Transparent Data Encryption?

There are many different variables involved in the creation of an accurate Transparent Data Encryption performance test. The results can vary depending on the test environment, test case or workload, measurement metrics or methods, and so on. Oracle cannot guarantee a specific performance overhead percentage that can apply in all possible scenarios. In practice, the performance tests by many Transparent Data Encryption customers are often in the low single digits as a percentage, but that is not universally the case.

If possible, use Oracle Real Application Testing (Oracle RAT) to capture a real production workload and then replay it against Transparent Data Encryption to get a true indication of the performance overhead that the you can expect within your environment.

2. How can I tune for optimal Transparent Data Encryption performance?

- TDE column encryption:
 - Limit the crypto processing by only encrypting the subset of columns that are strictly required to be protected. In addition, turn off the optional integrity checking feature.
 - After you apply column encryption, rebuild the column indexes.
- TDE tablespace encryption: TDE tablespace encryption improves performance by caching unencrypted data in memory in the SGA buffer cache. This feature reduces the number of crypto operations that must be performed when users run SELECT queries, which draw from the SGA instead of drawing from disk. (Drawing from disk forces the database to perform decrypt operations.) Ensure that the size of the SGA buffer cache is large enough to take full advantage of this performance optimization.

Another major performance boost comes from using hardware and software that supports CPU-based cryptographic acceleration available in Intel AES-NI and Oracle SPARC T4/T5. To take advantage of this feature, you must be running a recent version of the database, have a recent version of the operating system installed, and be using hardware that includes crypto acceleration circuitry within its CPUs/cores.

Database compression further speeds up Transparent Data Encryption performance because the crypto processing occurs on data that already is compressed, resulting in less total data to encrypt and decrypt.

In general:

 Ensure that you have applied the latest patches, which you can download from My Oracle Support at

https://support.oracle.com/portal/

- When you specify an encryption algorithm, remember that AES is slightly faster than 3DES. Use AES128 where possible. Be aware that the performance benefit is small.
- Use Exadata (described in Oracle Database Testing Guide), which includes additional performance benefits.

3. Are there specific issues that may slow down TDE performance, and if so, how do I avoid them?

TDE tablespace performance is slower if the database cannot use CPU-based hardware acceleration on the host machine due to factors such as older hardware, an older database version, or an older operating system.

Note the following with regard to specific database workloads:

Encrypting the whole data set at once (for example, while doing "Bulk Data Load" into an Oracle data warehouse): Lower crypto performance has been observed during bulk load of new data into the database or data warehouse. New data cannot be cached in SGA, so TDE tablespace encryption performance optimizations are bypassed. Hence, Transparent Data Encryption has no bonus performance benefits in this type of operation.

Follow these guidelines:

- Ensure that the database is running on servers with CPU-based cryptographic acceleration. This accelerates not only decrypt operations, but also encrypt operations as well (for loading new data). Take the crypto processing out of band by pre-encrypting the data set and then using Transportable Tablespaces (TTS) to load into the database. Try to parallelize this procedure where possible. This requires the database instance to copy the required TDE key to the keystore on the destination database. The procedure may not be feasible when there is a fixed time window for encryption and loading, and these must be done serially.
- Consider using TDE column encryption. Encrypt only the handful of sensitive regulated columns instead of encrypting an entire tablespace.
- Decrypting an entire data set at once (for example, while performing a full table scan by reading directly from disk, with no reading from SGA):

Lower crypto performance is observed when running full table scan queries where data is read directly from storage. Certain performance optimizations of TDE tablespace encryption are bypassed (no caching). Hence, Transparent Data Encryption has no bonus performance benefits in this type of operation.

Follow these guidelines:

- Ensure that the database is running on servers with CPU-based cryptographic acceleration.
- Retest the full table scan queries with a larger SGA size to measure performance when data is read from cache. Try setting the Oracle event number 10949 to disable direct path read.
- Partition the database so that less data is scanned by full table scan operations.
 Production databases often use partitioning for this kind of scenario (that is, to limit the total amount of data scanned).
- Consider using TDE column encryption. Encrypt only the handful of sensitive regulated columns instead of encrypting an entire tablespace.

Related Topics

- Performance Overhead of Transparent Data Encryption
 Transparent Data Encryption tablespace encryption has small associated performance overhead.
- Oracle Database Testing Guide
- Oracle Database Testing Guide

Part II

Using Oracle Data Redaction

Part II describes how to use Oracle Data Redaction.

- Introduction to Oracle Data Redaction
 Oracle Data Redaction enables you to redact data that is returned from queries issued by applications.
- Oracle Data Redaction Features and Capabilities
 Oracle Data Redaction provides a variety of ways to redact different types of data.
- Configuring Oracle Data Redaction Policies
 An Oracle Data Redaction policy defines how to redact data in a column based on the table column type and the type of redaction you want to use.
- Managing Oracle Data Redaction Policies in Oracle Enterprise Manager
 Oracle Enterprise Manager Cloud Control (Cloud Control) can manage Oracle Data
 Redaction policies and formats.
- Using Oracle Data Redaction with Oracle Database Features
 Oracle Data Redaction can be used with other Oracle features, but some Oracle features may have restrictions with regard to Oracle Data Redaction.
- Security Considerations for Oracle Data Redaction
 Oracle provides guidelines for using Oracle Data Redaction.

Introduction to Oracle Data Redaction

Oracle Data Redaction enables you to redact data that is returned from queries issued by applications.

What Is Oracle Data Redaction?

Redaction is the process of selectively removing or obscuring sensitive or confidential information from documents or databases. Oracle Data Redaction enables you to redact data that is returned from queries issued by applications.

When to Use Oracle Data Redaction

Unlike data masking, which masks sensitive data by permanently replacing it with fictitious but realistic data, data redaction masks data as it is received from the database, leaving the data in the database unchanged.

- Benefits of Using Oracle Data Redaction
 Oracle Data Redaction provides several benefits when you use it to protect your data.
- Example Use Cases for Oracle Data Redaction
 Oracle Data Redaction addresses common use case scenarios.
- Oracle Data Redaction in a Multitenant Environment
 Oracle Redaction policies are created and applied at the PDB level, and only apply to objects in that PDB. You cannot create redaction policies in the CDB root.

13.1 What Is Oracle Data Redaction?

Redaction is the process of selectively removing or obscuring sensitive or confidential information from documents or databases. Oracle Data Redaction enables you to redact data that is returned from queries issued by applications.

You can redact column data by using one of the following methods:

- **Full redaction.** You redact all of the contents of the column data. The redacted value returned to the querying application user depends on the data type of the column. For example, columns of the NUMBER data type are redacted with a zero (0), and character data types are redacted with a single space.
- Partial redaction. You redact a portion of the column data. For example, you can redact a Social Security number with asterisks (*), except for the last 4 digits.
- **Regular expressions.** You can use regular expressions to look for patterns of data to redact. For example, you can use regular expressions to redact email addresses, which can have varying character lengths. It is designed for use with character data only.
- Random redaction. The redacted data presented to the querying application user appears as randomly generated values each time it is displayed, depending on the data type of the column.
- Nullify redation. The Nullify redaction type redacts all the data in a column and replaces
 it with null values.
- **No redaction.** The No redaction type option enables you to test the internal operation of your redaction policies, with no effect on the results of gueries against tables with policies

defined on them. You can use this option to test the redaction policy definitions before applying them to a production environment.

Data Redaction is transparent to application users because it preserves the original data type and (optionally) the formatting. It is highly transparent to the database because the data remains the same in buffers, caches, and storage—only being changed at the last minute just before SQL query results are returned to the caller. The redaction is enforced consistently across all of the applications that use the same underlying database. You can specify which application users should see only redacted data by checking application user information that is passed into the database through the SYS_CONTEXT function; you can redact data based on attributes of the current database or application user; and you can implement multiple logical conditions within a given redaction policy. In addition, Data Redaction is implemented in a way that minimizes performance overhead. These characteristics make Oracle Data Redaction particularly well suited for usage by a range of applications, analytics tools, reporting tools, and monitoring tools that share common production databases.

Oracle Database applies the redaction at runtime when users access the data (that is, at query-execution time). This solution works well in a production system. During the time that the data is being redacted, all of the data processing is performed normally, and the back-end referential integrity constraints are preserved.

Data redaction can help you comply with industry regulations such as Payment Card Industry Data Security Standard (PCI DSS) by, for example, helping to restrict access to card holder data by business need to know.

Related Topics

Oracle Database Security Guide

13.2 When to Use Oracle Data Redaction

Unlike data masking, which masks sensitive data by permanently replacing it with fictitious but realistic data, data redaction masks data as it is received from the database, leaving the data in the database unchanged.

Data Redaction enables you to easily disguise the data using several different redaction styles.

Oracle Data Redaction is ideal for situations in which you must redact specific characters out of the result set of queries of Personally Identifiable Information (PII) returned to certain application users. For example, you may want to present a U.S. Social Security number that ends with the numbers 4320 as ***-**-4320.

Oracle Data Redaction is particularly suited for call center applications and other applications that are read-only. Take care when using Oracle Data Redaction with applications that perform updates back to the database, because redacted data can be written back to this database.

13.3 Benefits of Using Oracle Data Redaction

Oracle Data Redaction provides several benefits when you use it to protect your data.

These benefits are as follows:

 Applies the redaction at runtime, with no impact on underlying data or storage requirements

- Runs with little or no performance impact
- Requires no application changes
- Enables you to to specify and manage Oracle Redaction with scripts or through the Oracle Enterprise Manger user interface
- Is available for both on-premises and cloud databases

13.4 Example Use Cases for Oracle Data Redaction

Oracle Data Redaction addresses common use case scenarios.

- Oracle Data Redaction for Sensitive Data in Read-Only Static Pages
 Oracle Data Redaction enables you to redact sensitive data in application screens that have read-only static pages, such as dashboards and reports.
- Oracle Data Redaction for Preventing Data Exposure by Management Tools
 Oracle Data Redaction prevents sensitive data from being exposed by data management
 tools, such as tools for loading and viewing data.
- Oracle Data Redaction to Prevent Disclosure of Data from Offline Analytics
 Oracle Data Redaction prevents the disclosure of sensitive data to users who perform
 offline analytics on production data.
- Oracle Data Redaction with Ad Hoc Database Queries Considerations
 You may encounter situations where it is convenient to redact sensitive data for ad hoc queries that are performed by database users.

13.4.1 Oracle Data Redaction for Sensitive Data in Read-Only Static Pages

Oracle Data Redaction enables you to redact sensitive data in application screens that have read-only static pages, such as dashboards and reports.

You can define a redaction policy on sensitive columns so that the data is redacted before it is passed to the application. Because the pages are for static display only, and data is not posted back to the database, redacted data would not be written back to the database and potentially corrupt records.

13.4.2 Oracle Data Redaction for Preventing Data Exposure by Management Tools

Oracle Data Redaction prevents sensitive data from being exposed by data management tools, such as tools for loading and viewing data.

Many applications include tools that enable users to load and manage their data. An example could be an SaaS application that allows subscribers to bulk load and manage customer information. You can define a redaction policy on the sensitive data so that sensitive data is redacted when it is displayed to these users when they perform these administrative activities.

13.4.3 Oracle Data Redaction to Prevent Disclosure of Data from Offline Analytics

Oracle Data Redaction prevents the disclosure of sensitive data to users who perform offline analytics on production data.

Oracle Data Redaction can be used to prevent the exposure of sensitive information to users who perform analytics on data that is contrained in a data warehouse. You can define a redaction policy on sensitive data so that it is redacted as it is retrieved from the database and displayed to the user of the analytics software.

13.4.4 Oracle Data Redaction with Ad Hoc Database Queries Considerations

You may encounter situations where it is convenient to redact sensitive data for ad hoc queries that are performed by database users.

For example, in the course of supporting a production application, a user may need to run ad hoc database queries to troubleshoot and fix an urgent problem with the application. Even though Oracle Data Redaction is not designed to prevent data exposure to database users who run ad hoc queries directly against the database, it can provide an additional layer to reduce the chances of accidental data exposure. Because such users may have rights to change data, alter the database schema, and circumvent the SQL query interface entirely, it is possible for a malicious user to bypass Data Redaction policies in certain circumstances.

Be aware that Data Redaction does not place any restriction on the WHERE clause of ad hoc SQL, so the WHERE clause can be used in an iterative fashion to infer the actual data even when there is a Data Redaction policy on the queried column and only the redacted value is displayed.

Remember that the Oracle Database security tools are designed to be used together to improve overall security. By deploying one or more of these tools as a complement to Oracle Data Redaction, you can securely increase your overall security posture.

Related Topics

Oracle Data Redaction General Security Guidelines
 It is important to understand general security guidelines for using Oracle Data Redaction.

13.5 Oracle Data Redaction in a Multitenant Environment

Oracle Redaction policies are created and applied at the PDB level, and only apply to objects in that PDB. You cannot create redaction policies in the CDB root.

You cannot create a Data Redaction policy for a multitenant container database (CDB); you can only create the Data Redaction policy at the PDB level. This is because the objects for which you create Data Redaction policies typically reside in a PDB. If you have the SYSDBA privilege, then you can list all the PDBs in a CDB by running the SHOW PDBS command.

Note that certain users are exempt from redaction policies by default. These include users with administrative privileges, such as those with the DBA role or the SYSDBA administrative privilege. Other users who are exempt are users with the EXEMPT REDACTION POLICY system privilege, and users with the ALTER ANY REDACTION POLICY system privilege..

Oracle Data Redaction Features and Capabilities

Oracle Data Redaction provides a variety of ways to redact different types of data.

- Getting Started with Oracle Data Redaction
 You can create and enable Oracle Data Redaction policies by using the DBMS_REDACT
 package. You define redaction policies at several levels.
- Full Data Redaction to Redact All Data
 Full data redaction redacts the entire contents of a specified column of a table or view.
- Partial Data Redaction to Redact Portions of Data
 In partial data redaction, you redact portions of the displayed output.
- Regular Expressions to Redact Patterns of Data
 Regular expressions redact specific data within a column data value, based on a pattern search. You can use regular expressions to redact a column of strings of different lengths.
- Redaction Using Null Values
 You can create an Oracle Data Redaction policy that redacts column data by replacing it with null values.
- Random Data Redaction to Generate Random Values
 In random data redaction, the entire value is redacted by replacing it with a random value.
- Comparison of Full, Partial, and Random Redaction Based on Data Types
 The full, partial, and random data redaction styles affect the Oracle built-in, ANSI, user-defined, and Oracle supplied types in different ways.
- No Redaction for Testing Purposes
 You can create a Data Redaction policy that does not perform redaction. This enables
 you to include redaction policies in your applications during testing, and then apply those
 polices to your data as you move the application to production.
- Central Management of Named Data Redaction Policy Expressions
 You can create a library of named policy expressions that can be used in the columns of multiple tables and views.

14.1 Getting Started with Oracle Data Redaction

You can create and enable Oracle Data Redaction policies by using the DBMS_REDACT package. You define redaction policies at several levels.

- The schema level specifies the exact schema to redact.
- The object level includes tables, views, and materialized views where Orace Data Redaction policies are applied. You may apply a maximum of one policy per object.

The column level includes where redaction functions operate. You can define a
redaction function on one column when you create a redaction policy. You then
can edit the policy to redact additional columns in the object.

For example, you can create an Oracle Data Redaction policy on the SALARY column of an HR.EMPLOYEES table with the following procedure:

In this case, we use the ADD_POLICY procedure in the DBMS_REDACT package to define an Oracle Data Redaction policy called hr_emp_redact_comp_pol. The function type DBMS_REDACT.FULL specifies that full data redaction be performed in retrieved values in the salary column, which means that by default, number data types are replaced with zero (0) in the output text. The expression parameter sets the policy to perform the redaction if it evaluates to TRUE (1=1).

Oracle Data Redaction provides a variety of ways to redact different types of data, which are described in this section.

14.2 Full Data Redaction to Redact All Data

Full data redaction redacts the entire contents of a specified column of a table or view.

By default the output is displayed as follows:

- Character data types: The output text is a single space.
- **Number data types:** The output text is a zero (0).
- Date-time data types: The output text is set to the first day of January, 2001, which appears as 01-JAN-2001.

When you run the DBMS_REDACT.ADD_POLICY procedure, to set the function_type parameter setting for full redaction, you enter the following setting:

```
function_type => DBMS_REDACT.FULL
```

Full redaction is the default and is used whenever a Data Redaction policy specifies the column but omits the function type parameter setting.

You can use the <code>DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES</code> procedure to change the full redaction output to different values. You can find the current values by querying the <code>REDACTION_VALUES_FOR_TYPE_FULL</code> data dictionary view.

Related Topics

Syntax for Creating a Full Redaction Policy
 The DBMS_REDACT.ADD_POLICY procedure enables you to create a full redaction policy.

- Altering the Default Full Data Redaction Value
 The DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure alters the default full data redaction value.
- Oracle Database Reference
- Oracle Database PL/SQL Packages and Types Reference

14.3 Partial Data Redaction to Redact Portions of Data

In partial data redaction, you redact portions of the displayed output.

You can set the position within the actual data at which to begin the redaction, the number of characters to redact starting from that position, and the redaction character to use. (Actual data is the data in a protected table or view. An example of actual data could be the number 123456789, and the redacted data version of this number could be 999996789.) This type of redaction is useful for situations where you want it to be obvious to the person viewing the data that it was redacted in some way. Typically, you use this type of redaction for credit card numbers or ID numbers.

Be aware that partial data redaction requires that your data width remain fixed. If you want to redact columns containing string values of variable length, then you must use regular expressions.

To specify partial redaction, you must set the <code>DBMS_REDACT.ADD_POLICY</code> or <code>DBMS_REDACT.ALTER_POLICY</code> procedure function_type parameter to <code>DBMS_REDACT.PARTIAL</code> and use the function parameters parameter to define the partial redaction behavior.

The displayed output for partial data redaction can be as follows:

- Character data types: When partially redacted, a Social Security Number (represented as a hyphenated string within a character data type) with value 987-65-4320 could be redacted so that it is displayed as shown in the following examples. The code on the right specifies how to redact the character data: it specifies the expected input format of the actual data, the format to use for the display of the redacted output, the character to use for the redaction, the start position at which to begin the redaction, and how many characters to redact. The first example uses a predefined format (in previous releases called a shortcut) for character data type Social Security Numbers, and the second example replaces the first five numbers with an asterisk (*) while preserving the hyphens (-) in between the numbers.
 - function_parameters => DBMS_REDACT.REDACT_US_SSN_F5 results in XXX-XX-4320
 - function parameters => 'VVVFVVFVVVV, VVV-VV-VVV, *,1,5' result in ***-*-4320

In these examples, \forall describes each character that potentially can be redacted, and \mathbb{F} describes each character that you want to format using a formatting character.

- Number data types: Partially redacted NUMBER data types appear with some numerals replaced with specified characters. For example, a Social Security number stored as 987654321 could appear as follows. Both redact the first five digits. The first example uses a predefined format that is designed for Social Security numbers in the NUMBER data type, and the second replaces the first five numbers with the number 9, starting from the first digit.
 - function parameters => DBMS REDACT.REDACT NUM US SSN F5 results in XXXXX4321
 - function parameters => '9,1,5' results in 999994321

- Date-time data types: Partially redacted datetime values can appear simply as different dates. For example, the date 29-AUG-11 10.20.50.000000 AM could appear as follows. In the first example, the day of the month is redacted to 02 (using the setting d02) and in the second example, the month is redacted to DEC (using m12). The uppercase values show the actual day (D), actual month (M), actual year (Y), actual hour (H), actual minute (M), and actual second (S).
 - function_parameters => 'Md02YHMS' results in 02-AUG-11 10.20.50.000000
 AM
 - function_parameters => 'm12DYHMS' results in 29-DEC-11 10.20.50.000000
 AM

Related Topics

- Regular Expressions to Redact Patterns of Data
 Regular expressions redact specific data within a column data value, based on a pattern search. You can use regular expressions to redact a column of strings of different lengths.
- Syntax for Creating a Partial Redaction Policy
 The DBMS_REDACT.ADD_POLICY statement enables you to create policies that redact specific parts of the data returned to the application.

14.4 Regular Expressions to Redact Patterns of Data

Regular expressions redact specific data within a column data value, based on a pattern search. You can use regular expressions to redact a column of strings of different lengths.

For example, you can redact the user name of email addresses, so that only the domain shows (for example, replacing hpreston in the email address hpreston@example.com with [redacted] so that it appears as [redacted]@example.com). To perform the redaction, set the DBMS_REDACT.ADD_POLICY or DBMS_REDACT.ALTER_POLICY procedure function_type parameter to either DBMS_REDACT.REGEXP or DBMS_REDACT.REGEXP_WIDTH, and then use the following parameters to build the regular expression:

A string search pattern (that is, the values to search for), such as:

```
regexp pattern => '(.+)@(.+\.[A-Za-z]{2,4})'
```

This setting looks for a pattern of the following form:

```
one_or_more_characters@one_or_more_characters.2-4_characters_in_range_A-Z_or_a-z
```

• A replacement string that replaces the value matched by the <code>regexp_pattern</code> setting. The replacement string can include back references to sub-expressions of the main regular expression pattern. The following example replaces the data before the @ symbol (from the <code>regexp_pattern</code> setting) with the text <code>[redacted]</code>. The \2 setting refers to the second match group, which is (.+\.[A-Za-z]{2,4}) from the <code>regexp_pattern</code> setting.

```
regexp_replace_string => '[redacted]@\2'
```

 The starting position for the string search string, such as the first character of the data, such as:


```
regexp position => DBMS REDACT.RE BEGINNING
```

This value is the default if it is not specified.

 The kind of search and replace operation to perform, such as the first occurrence, every fifth occurrence, or all of the occurrences, such as:

```
regexp occurrence => DBMS REDACT.RE ALL
```

This value is the default if it is not specified.

• The default matching behavior for the search and replace operation, such as whether the search is case-sensitive (i sets it to be not case-sensitive):

```
regexp match parameter => 'i'
```

In addition to the default parameters, you can use a set of predefined formats that enable you to use commonly used regular expressions for telephone numbers, email addresses, and credit card numbers.

Related Topics

- Syntax for Creating a Regular Expression-Based Redaction Policy
 The regexp_* parameters of the DBMS_REDACT.ADD_POLICY procedure can create a regular expression-based redaction policy.
- Regular Expression-Based Redaction Policies Using Formats
 The DBMS_REDACT.ADD_POLICY procedure regexp_pattern and regexp_replace_string parameters both support formats.

14.5 Redaction Using Null Values

You can create an Oracle Data Redaction policy that redacts column data by replacing it with null values.

This feature enables you to use the <code>DBMS_REDACT.NULLIFY</code> function to hide all of the sensitive data in a table or view column and replace it with null values. You can set this function by using the <code>function_type</code> parameter of the <code>DBMS_REDACT.ADD_POLICY</code> or <code>DBMS_REDACT.ALTER_POLICY</code> procedure.

For example:

```
function type => DBMS REDACT.NULLIFY
```

Related Topics

Creating a Nullify Redaction Policy
 You can create Oracle Data Redaction policies that return null values for the displayed
 value of the table or view column.

14.6 Random Data Redaction to Generate Random Values

In random data redaction, the entire value is redacted by replacing it with a random value.

The redacted values displayed in the result set of the query change randomly each time application users run the query.

This type of redaction is useful in cases where you do not want it to be obvious that the data was redacted. It works especially well for number and datetime data types, where it is difficult to distinguish between random and real data.

The displayed output for random values changes based on the data type of the redacted column, as follows:

- Character data types: The random output is a mixture of characters (for example, HTU[G{\pjkEWcK). It behaves differently for the CHAR and VARCHAR2 data types, as follows:
 - CHAR data type: The redacted output is always in the same character set as the character set of the column. The byte length of the redacted output is always the same as the column definition length (that is, the column length that was provided at the time of table creation). For example, if the column is CHAR (20), then a string of 20 random characters is provided in the redacted output of the user's query.
 - VARCHAR2 data type: For random redaction of a VARCHAR data type, the redacted output is always in the same character set as the character set of the column. The length of the redacted output is limited based on the length of the actual data in the column. No characters in excess of the length of the actual data are displayed. For example, if the column is VARCHAR2 (20) and the row being redacted contains actual data with a length of 12, then a string of 12 random characters (not 20) is provided in the redacted output of the user's query for that row.
- Number data types: Each actual number value is redacted by replacing it with a random, non-negative number modulo the absolute value of the actual data. This redaction results in random numbers that do not exceed the precision of the actual data. For example, the number 987654321 can be redacted by replacing it with any of the numbers 12345678, 13579, 0, or 987654320, but not by replacing it with any of the numbers 987654321, 99987654321, or -1. The number -123 could be redacted by replacing it with the numbers 122, 0, or 83, but not by replacing it with any of the numbers 123, 1123, or -2.

The only exception to the above is when the actual value is an integer between -1 and 9. In this case, the actual data is redacted by replacing it with a random, non-negative integer modulo ten (10).

• Date-time data types: When values of the date data type are redacted using random Data Redaction, Oracle Database displays them with random dates that are always different from those of the actual data.

The setting for using random redaction is as follows:

function_type => DBMS_REDACT.RANDOM

Related Topics

Syntax for Creating a Random Redaction Policy
 A random redaction policy presents the redacted data to the querying application user as randomly generated values, based on the column data type.

14.7 Comparison of Full, Partial, and Random Redaction Based on Data Types

The full, partial, and random data redaction styles affect the Oracle built-in, ANSI, user-defined, and Oracle supplied types in different ways.

- Oracle Built-in Data Types Redaction Capabilities
 Oracle Data Redaction handles the Oracle built-in data types depending on the type of Data Redaction policies that are used.
- ANSI Data Types Redaction Capabilities
 Oracle Data Redaction converts ANSI data types in specific ways, depending on the type
 of redaction that the Data Redaction policy has.
- Built-in and ANSI Data Types Full Redaction Capabilities
 For full redaction, the default redacted value depends on whether the data type is Oracle built-in or ANSI.
- User-Defined Data Types or Oracle Supplied Types Redaction Capabilities Several data types or types are not supported by Oracle Data Redaction.

14.7.1 Oracle Built-in Data Types Redaction Capabilities

Oracle Data Redaction handles the Oracle built-in data types depending on the type of Data Redaction policies that are used.

Table 14-1 describes the Oracle Data Redaction support for Oracle built-in data types.

Table 14-1 Redaction Support for Oracle Built-in Data Types

Column Data Type	Full	Partial	Regexp	Random	Nullify
Character ¹	Yes	Yes	Yes	Yes	Yes
Number ²	Yes	Yes	No	Yes	Yes
Date-time ³	Yes	Yes	No	Yes	Yes
Interval ⁴	No	No	No	No	No
BOOLEAN	Yes	No	No	Yes	Yes
BFILE	No	No	No	No	No
BLOB	Yes	No	No	No	Yes
CLOB	Yes	No	Yes	No	Yes
NCLOB	Yes	No	Yes	No	Yes
ROWID	No	No	No	No	No
UROWID	No	No	No	No	No
Raw ⁵	No	No	No	No	No

Includes CHAR, VARCHAR2 (including long VARCHAR2, for example, VARCHAR2 (20000)), NCHAR, NVARCHAR2

14.7.2 ANSI Data Types Redaction Capabilities

Oracle Data Redaction converts ANSI data types in specific ways, depending on the type of redaction that the Data Redaction policy has.

² Includes NUMBER, FLOAT, BINARY FLOAT, BINARY DOUBLE

³ Includes DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE

⁴ Includes INTERVAL YEAR TO MONTH, INTERVAL DAY TO SECOND

⁵ Includes LONG RAW, RAW

Table 14-2 compares how the full, partial, and random redaction styles work for ANSI data types, with regard to how they are converted and their support status.

Table 14-2 Redaction Support for the ANSI Data Types

Data Type	How Converted	Full Redaction	Partial Redaction	Regexp	NULL Redaction	Random Redaction
CHARACTER(n),	Converted	Yes	Yes	Yes	Yes	Yes
CHAR(n)	to CHAR (n)					
CHARACTER	Converted to VARCHAR2 (n)	Yes	Yes	Yes	Yes	Yes
VARYING(n),						
CHAR VARYING(n)						
NATIONAL	Converted to NCHAR (n)	Yes	Yes	Yes	Yes	Yes
CHARACTER(n),						
NATIONAL CHAR(n),						
NCHAR(n)						
NATIONAL	Converted to NVARCHAR 2 (n)	Yes	Yes	Yes	Yes	Yes
CHARACTER						
VARYING(n), NATIONAL CHAR						
VARYING(n),						
NCHAR VARYING(n)						
NUMERIC[(p,s)]	Converted	Yes	Yes	Yes	Yes	Yes
DECIMAL[(p,s)]	to					
	NUMBER(p, s)					
INTEGER,	Converted	Yes	Yes	Yes	Yes	Yes
INT,	to converted	100	163	100	100	163
SMALLINT	NUMBER (38					
)			.,		
FLOAT,	Converted to	Yes	Yes	Yes	Yes	Yes
DOUBLE PRECISION	FLOAT (126					
)					
REAL	Converted	Yes	Yes	Yes	Yes	Yes
	to FLOAT(63)					
GRAPHIC,	No	No	No	No	No	No
LONG VARGRAPHIC,	conversion	INO	110	INU	INO	140
ARGRAPHIC,						
TIME						

14.7.3 Built-in and ANSI Data Types Full Redaction Capabilities

For full redaction, the default redacted value depends on whether the data type is Oracle built-in or ANSI.

ANSI Data Types Redaction Capabilities shows the default settings for both Oracle built-in and ANSI data type columns that use full redaction.

Table 14-3 Default Settings and Categories for Columns That Use Full Redaction

Data Type	Default Redacted Value	Data Type Category
CHARACTER	Single space (" ")	Oracle built-in
CHARACTER(n),	Single space (" ")	ANSI
CHAR(n)		
CHARACTER VARYING(n),	Single space (" ")	ANSI
CHAR VARYING(n)		
NATIONAL CHARACTER(n),	Single space (" ")	ANSI
NATIONAL CHAR(n),		
NCHAR(n)		
NATIONAL CHARACTER VARYING(n),	Single space (" ")	ANSI
NATIONAL CHAR VARYING(n),		
NCHAR VARYING(n)		
NUMBER	Zero (0)	Oracle built-in
NUMERIC[(p, s)]	Zero (0)	Oracle built-in
DECIMAL[(p, s)]		
INTEGER,	Zero (0)	ANSI
INT,		
SMALLINT		
FLOAT,	Zero (0)	ANSI
DOUBLE PRECISION		
REAL	Zero (0)	ANSI
DATE-TIME	01-01-01 or 01-01-01 01:00:00	Oracle built-in
BLOB	Oracle's raw representation of [redacted]	Oracle built-in
CLOB	[redacted]	Oracle built-in
NCLOB	[redacted]	Oracle built-in

If you have changed the character set, then you may need to invoke the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure to set the value to the raw representation in the new character set, as follows:

```
DECLARE
  new_red_blob BLOB;
BEGIN

DBMS_LOB.CREATETEMPORARY(new_red_blob, TRUE);
DBMS_LOB.WRITE(new_red_blob, 10, 1, UTL_RAW.CAST_TO_RAW('[redacted]'));
dbms_redact.update_full_redaction_values(
  blob_val => new_red_blob);
DBMS_LOB.FREETEMPORARY(new_red_blob);
END;
//
```


After you run this procedure, restart the database.

See also Altering the Default Full Data Redaction Value for more information about using the DBMS REDACT. UPDATE FULL REDACTION VALUES procedure.

14.7.4 User-Defined Data Types or Oracle Supplied Types Redaction Capabilities

Several data types or types are not supported by Oracle Data Redaction.

Table 14-4 compares how the full, partial, regular expression, and random redaction styles work for user-defined and Oracle-supplied types.

Table 14-4 Redaction Support for the User-Defined Data Types or Oracle-Supplied Types

Data Type or Type	Full Redaction	Partial Redaction	Regexp	NULL Redactio n	Random Redaction
User-defined data types	No	No	No	No	No
Oracle supplied types: Any types, XML types, Oracle Spatial types	No	No	No	No	No

14.8 No Redaction for Testing Purposes

You can create a Data Redaction policy that does not perform redaction. This enables you to include redaction policies in your applications during testing, and then apply those polices to your data as you move the application to production.

This is useful for cases in which you have a redacted base table, yet you want a specific application user to have a view that always shows the actual data. By default, a view created on a redacted table is redacted with the same policy used for the base table. However, you can define a separate redaction policy for the view. You can create a new view of the redacted table and then define a Data Redaction policy for this view. The policy still exists on the base table, but no redaction is performed when the application queries using the view as long as the DBMS_REDACT.NONE function_type setting was used to create a policy on the view.

14.9 Central Management of Named Data Redaction Policy Expressions

You can create a library of named policy expressions that can be used in the columns of multiple tables and views.

By having named policy expressions, you can centrally manage all of the policy expressions within a database.

When you modify the policy expression, the change is reflected in all table columns that use the expression. The policy expression takes precedence over the expression setting in the Data Redaction policy. To create the policy expression, you must use the DBMS_REDACT.CREATE_POLICY_EXPRESSION procedure, and to apply the policy expression to a column, you use DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL. This

feature provides flexibility to redact different columns in a table or view, based on different runtime conditions.

For example, consider a use case that involves a customer care application. A customer calls the customer care center to request a return on a recent purchase. A level 1 support representative of the call center must first verify the order ID, customer name, and customer address before initiating the return. During the process, there is no need for the level 1 support representative to view the customer's credit card number. So, the credit card column is redacted when the support representative queries the customer details in the call center application. When the return is initiated, a sales representative from the return department may need to view the credit card number to process the return. However, there is no need for the sales representative to view the expiration date of the credit card. So, when the sales representative queries the customer details in the same application, the credit card number is visible but the expiration date is redacted.

In this use case, different columns in the customer details table must be redacted in different ways, based on who the logged in user is. Oracle Data Redaction simplifies the implementation of this use case by using named Data Redaction policy expressions. This type of policy expression enables you to define and associate different policy expressions on different columns in the same table or view. Moreover, you can centrally manage named policy expressions within a database. Any updates that you make to a named policy expression are immediately propagated to all of the associated table or view columns.

Related Topics

Creating and Managing Multiple Named Policy Expressions
 A named, centrally managed Oracle Data Redaction policy expression can be used in multiple redaction policies and applied to multiple tables or views.

Configuring Oracle Data Redaction Policies

An Oracle Data Redaction policy defines how to redact data in a column based on the table column type and the type of redaction you want to use.

About Oracle Data Redaction Policies

An Oracle Data Redaction policy defines the conditions in which redaction must occur for a table or view.

Privileges for Managing Oracle Data Redaction Policies

Because data redaction involves the protection of highly sensitive data, only trusted users should create Oracle Data Redaction policies.

Planning an Oracle Data Redaction Policy

Before you create a Oracle Data Redaction policy, you should plan the data redaction policy that best suits your site's needs.

• General Syntax of the DBMS REDACT.ADD POLICY Procedure

To create a Data Redaction policy, you must use the <code>DBMS_REDACT.ADD_POLICY</code> procedure.

• Using Expressions to Define Conditions for Data Redaction Policies

The expression parameter in the DBMS_REDACT.ADD_POLICY procedure sets the conditions under which the policy applies.

Creating and Managing Multiple Named Policy Expressions

A named, centrally managed Oracle Data Redaction policy expression can be used in multiple redaction policies and applied to multiple tables or views.

Creating a Full Redaction Policy and Altering the Full Redaction Value

You can create a full redaction policy to redact all contents in a data column, and optionally, you can alter the default full redaction value.

· Creating a Nullify Redaction Policy

You can create Oracle Data Redaction policies that return null values for the displayed value of the table or view column.

Creating a Partial Redaction Policy

In partial data redaction, you can redact portions of data for different kinds of data types.

Creating a Regular Expression-Based Redaction Policy

A regular expression-based redaction policy enables you to redact data based on a search-and-replace model.

Creating a Random Redaction Policy

A random redaction policy presents redacted data as randomly generated values, such as Ukjs132[[]]]s for the character data type.

Creating a Policy That Uses No Redaction

You can create policies that use no redaction at all, for when you want to test the policy in a development environment.

• Exemption of Users from Oracle Data Redaction Policies

You can exempt users from having Oracle Data Redaction policies applied to the data they access.

Altering an Oracle Data Redaction Policy

The <code>DBMS_REDACT.ALTER_POLICY</code> procedure enables you to modify Oracle Data Redaction policies.

Redacting Multiple Columns

You can redact more than one column in a Data Redaction policy.

- Disabling and Enabling an Oracle Data Redaction Policy
 You can disable and then reenable Oracle Data Redactions policies as necessary.
- Dropping an Oracle Data Redaction Policy
 The DBMS_REDACT.DROP_POLICY procedure drops Oracle Data Redaction policies.
- Tutorial: SQL Expressions to Build Reports with Redacted Values
 SQL expressions can be used to build reports based on columns that have Oracle Data Redaction policies defined on them.
- Using Trace Files to Troubleshoot Oracle Data Redaction Policies
 Trace files for Oracle Data Redaction can be generated at either the system level or the session level.
- Oracle Data Redaction Policy Data Dictionary Views
 Oracle Database provides data dictionary views that list information about Data Redaction policies.

15.1 About Oracle Data Redaction Policies

An Oracle Data Redaction policy defines the conditions in which redaction must occur for a table or view.

A Data Redaction policy has the following characteristics:

- Oracle Data Redaction polices are applied to tables, views, or materialized views. You can apply only one policy on these objects.
- The Data Redaction policy defines the following: What kind of redaction to perform, how the redaction should occur, and when the redaction takes place.
 Oracle Database performs the redaction at execution time, just before the data is returned to the application.
- A Data Redaction policy can fully redact values, partially redact values, or randomly redact values. In addition, you can define a Data Redaction policy to not redact any data at all, for when you want to test your policies in a test environment.
- A Data Redaction policy can be defined with a policy expression which allows for different application users to be presented with either redacted data or actual data, based on whether the policy expression returns TRUE or FALSE. Redaction takes place when the boolean result of evaluating the policy expression is TRUE. For security reasons, the functions and operators that can be used in the policy expression are limited to SYS_CONTEXT and a few others. User-created functions are not allowed. Policy expressions can make use of the SYS_SESSION_ROLES namespace with the SYS_CONTEXT function to check for enabled roles.
- Different named Data Redaction policy expressions can be created and then applied individually for different columns within the same table or view.

Table 15-1 lists the procedures in the DBMS REDACT package.

S
ٔ

Procedure	Description
DBMS_REDACT.ADD_POLICY	Adds a Data Redaction policy to a table or view
DBMS_REDACT.ALTER_POLICY	Modifies a Data Redaction policy
DBMS_REDACT.APPLY_POLICY_EXPR_TO _COL	Applies a named Data Redaction policy expression to a table or view column
DBMS_REDACT.CREATE_POLICY_EXPRES SION	Creates a named Data Redaction policy expression
DBMS_REDACT.DISABLE_POLICY	Disables a Data Redaction policy
DBMS_REDACT.DROP_POLICY	Drops a Data Redaction policy
DBMS_REDACT.DROP_POLICY_EXPRESSION	Drops a named Data Redaction policy expression
DBMS_REDACT.ENABLE_POLICY	Enables a Data Redaction policy
DBMS_REDACT.UPDATE_FULL_REDACTIO N_VALUES	Globally updates the full redaction value for a given data type. You must restart the database instance before the updated values can be used.
DBMS_REDACT.UPDATE_POLICY_EXPRES SION	Updates a named Data Redaction policy expression

Oracle Database PL/SQL Packages and Types Reference

15.2 Privileges for Managing Oracle Data Redaction Policies

Because data redaction involves the protection of highly sensitive data, only trusted users should create Oracle Data Redaction policies.

You must have the EXECUTE privilege on the DBMS_REDACT package in order to run its subprograms. Procedures in the interface are run with privileges of the current user.

In addition to the <code>EXECUTE</code> privilege on the <code>DBMS_REDACT</code> package to run its subprograms, you must have the following privileges:

- The administer redaction policy privilege, as follows:
 - Syntax of the ADMINISTER REDACTION POLICY privilege grant if the privilege is to apply to all non-sys schemas across the database:

GRANT ADMINISTER REDACTION POLICY TO grantee;

 Syntax of the ADMINISTER REDACTION POLICY privilege grant if the privilege is to be restricted to a specific schema:

GRANT ADMINISTER REDACTION POLICY ON SCHEMA schema TO grantee;

You do not need any Oracle Data Redaction-specific privileges to access the underlying tables or views that will be protected by the policy. See Exemption of Users from Oracle Data Redaction Policies for Oracle Data Redaction-specific privileges to access actual data.

To find the privileges that a user has been granted, you can query the <code>DBA_SYS_PRIVS</code> data dictionary view. To find schema-specific privileges that a user has been granted, you can query any of the *SCHEMA PRIVS data dictionary views.

Related Topics

- Oracle Database PL/SQL Packages and Types Reference
- Oracle Database Reference

15.3 Planning an Oracle Data Redaction Policy

Before you create a Oracle Data Redaction policy, you should plan the data redaction policy that best suits your site's needs.

- 1. Ensure that you have the appropriate privileges to create and manage Oracle Data Redaction policies.
 - To create redaction policies on objects in your own schema, you must have the EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY system or schema privilege.
 - To create redaction policies on objects in another user's schema, you must have the EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY system privilege.
- 2. Determine the data type of the table or view column that you want to redact.
- 3. Determine if the base object to which you want to add the Data Redaction policy has dependent objects. If it does have dependent objects, then these objects will become invalid when the Data Redaction policy is added to the base object, and these objects will be recompiled automatically when they are used.
 - Alternatively, you can proactively recompile them yourself by using an ALTER ... COMPILE statement. Be aware that invalidating dependent objects (by adding a Data Redaction policy on their base object) and causing them to need to be recompiled can decrease performance in the overall system. Oracle recommends that you only add a Data Redaction policy to an object that has dependent objects during off-peak hours or during a scheduled downtime.
- 4. Ensure that this column is not used in an Oracle Virtual Private Database (VPD) row filtering condition. That is, it must not be part of the VPD predicate generated by the VPD policy function.
- **5.** Decide on the type of redaction that you want to perform: full, random, partial, regular expressions, nullify, or none.
- 6. Decide which users to apply the Data Redaction policy to.
- 7. Based on this information, create the Data Redaction policy by using the DBMS REDACT.ADD POLICY procedure.
- 8. Configure the policy to have additional columns to be redacted.

After you create the Data Redaction policy, it is automatically enabled and ready to redact data.

Related Topics

Privileges for Managing Oracle Data Redaction Policies
 Because data redaction involves the protection of highly sensitive data, only trusted users should create Oracle Data Redaction policies.

Redacting Multiple Columns
 You can redact more than one column in a Data Redaction policy.

15.4 General Syntax of the DBMS_REDACT.ADD_POLICY Procedure

To create a Data Redaction policy, you must use the DBMS REDACT.ADD POLICY procedure.

The complete syntax for the DBMS REDACT.ADD POLICY procedure is as follows:

In this specification:

object_schema: Specifies the schema of the object on which the Data Redaction policy
will be applied. If you omit this setting (or enter NULL), then Oracle Database uses the
current user's name. Be aware that the meaning of "current user" here can change,
depending on where you invoke the DBMS REDACT.ADD POLICY procedure.

For example, suppose user mpike grants user fbrown the EXECUTE privilege on a definer's rights PL/SQL package called mpike.protect_data in mpike's schema. From within this package, mpike has coded a procedure called protect_cust_data, which invokes the DBMS_REDACT.ADD_POLICY procedure. User mpike has set the object_schema parameter to NULL.

When fbrown invokes the protect_cust_data procedure in the mpike.protect_data package, Oracle Database attempts to define the Data Redaction policy around the object cust_data in the mpike schema, not the cust_data object in the schema that belongs to fbrown.

- object_name: Specifies the name of the table or view to which the Data Redaction policy applies. Required for DBMS REDACT.ADD POLICY.
- policy_name: Specifies the name of the policy to be created. Ensure that this name is
 unique in the database instance. You can find a list of existing Data Redaction policies by
 querying the POLICY_NAME column of the REDACTION_POLICIES data dictionary view.
 Required for DBMS REDACT.ADD POLICY.
- policy_description: Specifies a brief description of the purpose of the policy. Optional with DBMS REDACT.ADD POLICY.
- column name: Specifies the column whose data you want to redact. Note the following:

- You can apply the Data Redaction policy to multiple columns. If you want to apply the Data Redaction policy to multiple columns, then after you use DBMS_REDACT.ADD_POLICY to create the policy, run the DBMS_REDACT.ALTER_POLICY procedure as many times as necessary to add each of the remaining required columns to the policy. See Altering an Oracle Data Redaction Policy.
- Only one policy can be defined on a table or view. You can, however, create a new view on the table, and by defining a second redaction policy on this new view, you can choose to redact the columns in a different way when a query is issued against this new view. When deciding how to redact a given column, Oracle Database uses the policy of the earliest view in a view chain.
- If you do not specify a column (for example, by entering NULL), then no columns are redacted by the policy. This enables you to create your policies so that they are in place, and then later on, you can add the column specification when you are ready. If you omit a column name when setting DBMS_REDACT.ADD_POLICY, then only the expression parameter is required, and the following parameters are optional: object_schema, enable, and policy description.
- Do not use a column that is currently used in an Oracle Virtual Private
 Database (VPD) row filtering condition. In other words, the column should
 not be part of the VPD predicate generated by the VPD policy function. (See
 Oracle Data Redaction and Oracle Virtual Private Database for more
 information about using Data Redaction with VPD.)
- column_description: Specifies a brief description of the column that you are redacting. The column_description can be specified only when column_name is specified. Optional with DBMS REDACT.ADD POLICY.
- function_type: Specifies a function that sets the type of redaction. Can be specified only when column name is specified.

See the following sections for more information:

- Syntax for Creating a Full Redaction Policy
- Syntax for Creating a Partial Redaction Policy
- Syntax for Creating a Regular Expression-Based Redaction Policy
- Syntax for Creating a Nullify Redaction Policy
- Syntax for Creating a Random Redaction Policy
- Syntax for Creating a Policy with No Redaction

You can specify function_type only when column_name is specified for DBMS_REDACT.ADD_POLICY. If you omit the function_type parameter, then the default redaction function_type setting is DBMS_REDACT.FULL.

- function_parameters: Specifies how the column redaction should appear for partial redaction. Required if function_type is DBMS_REDACT.PARTIAL. See Syntax for Creating a Partial Redaction Policy.
- expression: Specifies a Boolean SQL expression to determine how the policy is applied. Redaction takes place only if this policy expression evaluates to TRUE.
 Required for DBMS_REDACT.ADD_POLICY. See Using Expressions to Define Conditions for Data Redaction Policies.

By default, a Data Redaction policy expression applies to all the columns that belong to the Data Redaction policy defined on that table or view. Alternatively, you can choose to create and associate a policy expression for individual columns to override the existing expression. These column level expressions are called as named policy expressions. See Creating and Managing Multiple Named Policy Expressions.

- enable: When set to TRUE, enables the policy upon creation. When set to FALSE, it creates the policy as a disabled policy. The default is TRUE. After you create the policy, you can disable or enable it. See the following sections:
 - Disabling an Oracle Data Redaction Policy
 - Enabling an Oracle Data Redaction Policy
- regexp_pattern, regexp_replace_string, regexp_position, regexp_position, regexp_occurrence, regexp_match_parameter: Enable you to use regular expressions to redact data, either fully or partially. If the regexp_pattern does not match anything in the actual data, then full redaction will take place, so be careful when specifying the regexp_pattern. Ensure that all of the values in the column conform to the semantics of the regular expression you are using. See Syntax for Creating a Regular Expression-Based Redaction Policy for more information.

To find information about redaction policies, you can query the REDACTION_POLICIES data dictionary view.

15.5 Using Expressions to Define Conditions for Data Redaction Policies

The expression parameter in the DBMS_REDACT.ADD_POLICY procedure sets the conditions under which the policy applies.

- About Using Expressions in Data Redaction Policies
 The DBMS_REDACT.ADD_POLICY and DBMS_REDACT.ALTER_POLICY expression parameter define a Boolean expression that must evaluate to TRUE to enable redaction.
- Supported Functions for Data Redaction Expressions
 You can create expressions that use functions to return specific types of data, such as
 SYS CONTEXT namespaces.
- Applying the Redaction Policy Based on User Environment
 You can apply a Data Redaction policy based on the user's environment, such as the
 session user name or a client identifier.
- Applying the Redaction Policy Based on Database Roles
 You can apply a Data Redaction policy based on a database role, such as the DBA role.
- Applying the Redaction Policy Based on Oracle Label Security Label Dominance You can set a condition on which to apply a Data Redaction policy based on the dominance of Oracle Label Security labels.
- Applying the Redaction Policy Based on Application Express Session States
 You can apply a Data Redaction policy based on an Oracle Application Express (APEX) session state.
- Applying the Redaction Policy to All Users
 You can apply the policy irrespective of the context to any user, with no filtering.

15.5.1 About Using Expressions in Data Redaction Policies

The DBMS_REDACT.ADD_POLICY and DBMS_REDACT.ALTER_POLICY expression parameter define a Boolean expression that must evaluate to TRUE to enable redaction.

The expression that is defined in the expression parameter is the default expression for the Oracle Data Redaction policy. If you apply a named policy expression for the columns that will be redacted by the Data Redaction policy, then the named policy expression takes precedence over the expression defined in the Data Redaction policy. The expression parameter defaults to 1=1, which is a policy expression that evaluates to TRUE. This setting enables the redaction to be performed so long as the querying user is not exempt from the redaction policy. Using the default policy expression by omitting the expression parameter saves CPU time during the fetch operation from a redacted column. By avoiding the need to evaluate any policy expression, the performance of fetching from any column that is protected by a Data Redaction policy that uses the default policy expression is improved.

You can create expressions that make use of other Oracle Database features. For example, you can create expressions that are based on a user's environment (using the SYS_CONTEXT and XS_SYS_CONTEXT functions), character string functions, the Oracle Label Security label dominance functions, or Oracle Application Express functions.

Follow these guidelines when you write the expression:

- Use only the following operators: AND, OR, IN, NOT IN, =, !=, <>, <, >, >=, <=
- Because the expression must evaluate to TRUE for redaction, be careful when
 making comparisons with NULL. Remember that in SQL the value NULL is
 undefined, so comparisons with NULL tend to return FALSE.
- Do not use user-created functions in the expression parameter; this is not permitted.
- Remember that for user SYS and users who have the EXEMPT REDACTION POLICY
 system or schema privilege, all of the Data Redaction policies are bypassed, so
 the results of their queries are not redacted. When you exempt a user from a Data
 Redaction policy, you should be aware of how the exemption is affected by users
 with specific privileges (such as the DBA role) and by Oracle Data Pump.

Related Topics

- Exemption of Users from Oracle Data Redaction Policies
 You can exempt users from having Oracle Data Redaction policies applied to the data they access.
- Oracle Data Pump Security Model for Oracle Data Redaction
 The DATAPUMP_EXP_FULL_DATABASE role includes the powerful EXEMPT REDACTION POLICY system privilege.

15.5.2 Supported Functions for Data Redaction Expressions

You can create expressions that use functions to return specific types of data, such as SYS CONTEXT namespaces.

Expressions Using Namespace Functions

You can use the $\verb"sys_context"$ and $\verb"xs_sys_context"$ namespace functions in Data Redaction expressions.

Expressions Using the SUBSTR Function

You can use the SUBSTR function, which returns portion (such as characters 1–3) of the character string specified, in Data Redaction expressions. The first parameter must be a constant string or a call to the SYS CONTEXT function or the XS SYS CONTEXT function.

Expressions Using Length of Character String Functions You can use functions that return the length of character strings, in Data Redaction expressions.

- Expressions Using Oracle Application Express Functions
 You can use Oracle Application Express functions in Data Redaction expressions.
- Expressions Using Oracle Label Security Functions
 You can use Oracle Label Security functions with Data Redaction expressions.

15.5.2.1 Expressions Using Namespace Functions

You can use the <code>SYS_CONTEXT</code> and <code>XS_SYS_CONTEXT</code> namespace functions in Data Redaction expressions.

Table 15-2 Expressions Using Namespace Functions

Namespace Function	Description
SYS_CONTEXT	Returns the value associated with a namespace. The following namespace functions are valid:
	 USERENV (default namespace), which includes values such as SESSION_USER and CLIENT_IDENTIFIER. SYS_SESSION_ROLES, which contains attributes for each role XS\$SESSION, which contains attributes for the user session. User-defined namespaces, but these must exist in the DBA_CONTEXT catalog view before the policy expression is created.
XS_SYS_CONTEXT	Similar to SYS_CONTEXT but designed for an Oracle Real Application Security environment. XS_SYS_CONTEXT supports the same namespaces that SYS_CONTEXT
	supports.

Related Topics

- Oracle Database SQL Language Reference
- Oracle Database Real Application Security Administrator's and Developer's Guide

15.5.2.2 Expressions Using the SUBSTR Function

You can use the SUBSTR function, which returns portion (such as characters 1–3) of the character string specified, in Data Redaction expressions. The first parameter must be a constant string or a call to the SYS CONTEXT function or the XS SYS CONTEXT function.

Table 15-3 Expressions Using SUBSTR String Functions

SUBSTR String Function	Description
SUBSTR	Returns a portion of the input char value, beginning at character position, substring_length characters long. SUBSTR calculates length using characters as defined by the input character set.
SUBSTRB	Returns the specified portion of the input value in bytes
SUBSTRC	Returns the specified portion of the input value in Unicode complete characters
SUBSTR2	Returns the specified portion of the input value in UCS2 code points
SUBSTR4	Returns the specified portion of the input value in UCS4 code points

Oracle Database SQL Language Reference

15.5.2.3 Expressions Using Length of Character String Functions

You can use functions that return the length of character strings, in Data Redaction expressions.

Oracle Database also checks that the arguments to each of these operators is either a constant string or a call to the $\tt SYS$ CONTEXT or $\tt XS$ $\tt SYS$ CONTEXT function.

Table 15-4 Expressions Using Character String Functions

Character String Function	Description
LENGTH	Returns the length of the input char value. LENGTH calculates length using characters as defined by the input character set.
LENGTHB	Returns the length of the input value in bytes
LENGTHC	Returns the length of the input value in Unicode complete characters
LENGTH2	Returns the length of the input value in UCS2 code points
LENGTH4	Returns the length of the input value in UCS4 code points

Related Topics

Oracle Database SQL Language Reference

15.5.2.4 Expressions Using Oracle Application Express Functions

You can use Oracle Application Express functions in Data Redaction expressions.

Table 15-5 Oracle Application Express Functions

Oracle Application Express Function	Description
V	Returns the session state for an item. It is a wrapper for the APEX_UTIL.GET_SESSION_STATE function
NV	Returns the numeric value for a numeric item. It is a wrapper for the APEX_UTIL.GET_NUMERIC_SESSION_STATE function

Oracle APEX API Reference

15.5.2.5 Expressions Using Oracle Label Security Functions

You can use Oracle Label Security functions with Data Redaction expressions.

For the functions in the **bold** font, Oracle Data Redaction checks that their parameters are either constants or calls to only one of the <code>SA_UTL.NUMERIC_LABEL</code>, <code>CHAR_TO_LABEL</code>, and <code>SA_SESSION.LABEL</code> functions, and that the arguments to those functions are constant.

Table 15-6 Oracle Label Security Functions

Oracle Label Security Function	Description
LBACSYS.OLS_LABEL_DOMINATES	Checks if the session label of an Oracle Label Security policy dominates or is equal to another OLS label
OLS_DOMINATES, DOMINATES, and S_DOM	Checks if one OLS label is dominant to a second OLS label.
	DOMINATES and S_DOM, which were used in releases earlier than Oracle Database 12.1, were deprecated in that release. Use the OLS_DOMINATES or OLS_DOM function instead.
OLS_DOM	Checks if one OLS label is dominant to a second OLS label
DOM	Checks if one OLS label is dominant to a second OLS label
OLS_STRICTLY_DOMINATES	Checks if one OLS label is dominant to a second OLS label and is not equal to it
STRICTLY_DOMINATES	Checks if one OLS label is dominant to a second OLS label and is not equal to it
SA_UTL.DOMINATES	Checks if one OLS label dominates a second OLS label or if the session label for a given OLS policy dominates an OLS label
SA_UTL.CHECK_READ	Checks if a user can read a policy-protected row
SA_UTL.NUMERIC_LABEL	Returns the current session OLS label
CHAR_TO_LABEL	Converts a character string to an OLS label tag

Table 15-6 (Cont.) Oracle Label Security Functions

Oracle Label Security Function	Description
SA_SESSION.LABEL	Returns the label that is associated with the specified OLS policy

Using Oracle Label Security Administrator's Guide

15.5.3 Applying the Redaction Policy Based on User Environment

You can apply a Data Redaction policy based on the user's environment, such as the session user name or a client identifier.

• Use the USERENV namespace of the SYS_CONTEXT function in the DBMS_REDACT.ADD_POLICY expression parameter to apply the policy based on a user's environment.

For example, to apply the policy only to the session user name psmith:

```
expression => 'SYS CONTEXT(''USERENV'',''SESSION USER'') = ''PSMITH'''
```

Related Topics

Oracle Database SQL Language Reference

15.5.4 Applying the Redaction Policy Based on Database Roles

You can apply a Data Redaction policy based on a database role, such as the DBA role.

• Use the SYS_SESSION_ROLES namespace in the SYS_CONTEXT function to apply the policy based on a user role.

This namespace contains attributes for each role. The value of the attribute is $\tt TRUE$ if the specified role is enabled for the querying application user; the value is $\tt FALSE$ if the role is not enabled.

For example, suppose you wanted only supervisors to be allowed to see the actual data. The following example shows how to use the <code>DBMS_REDACT.ADD_POLICY</code> <code>expression</code> parameter to set the policy to show the actual data to any application user who has the <code>supervisor</code> role enabled, but redact the data for all of the other application users.

```
expression => 'SYS_CONTEXT(''SYS_SESSION_ROLES'',''SUPERVISOR'') =
''FALSE'''
```

You can specify multiple roles with the expression parameter. The following example checks for the presence of the supervisor, clerk, and temp_worker roles. In this example, the expression evaluates to TRUE if the session user has the CLERK OR TEMP WORKER role unless the user has the SUPERVISOR role.

```
expression => 'SYS_CONTEXT(''SYS_SESSION_ROLES'',''SUPERVISOR'') =
''FALSE''
```



```
OR SYS_CONTEXT(''SYS_SESSION_ROLES'',''CLERK'') = ''TRUE''
OR SYS_CONTEXT(''SYS_SESSION_ROLES'',''TEMP_WORKER'') = ''TRUE'''
```

Oracle Database SQL Language Reference

15.5.5 Applying the Redaction Policy Based on Oracle Label Security Label Dominance

You can set a condition on which to apply a Data Redaction policy based on the dominance of Oracle Label Security labels.

 Use the public standalone function OLS_LABEL_DOMINATES to check the dominance of a session label.

This function returns 1 (TRUE) if the session label of the specified policy_name value dominates or is equal to the label that is specified by the label parameter; otherwise, it returns 0 (FALSE).

For example, to apply a Data Redaction policy only in cases where the session label for the policy hr ols pol does not dominate nor is equal to label hs:

```
expression => 'OLS LABEL DOMINATES (''hr ols pol'',''hs'') = 0'
```

Related Topics

Oracle Label Security Administrator's Guide

15.5.6 Applying the Redaction Policy Based on Application Express Session States

You can apply a Data Redaction policy based on an Oracle Application Express (APEX) session state.

- Use either of the following public Application Express APIs in the DBMS_REDACT.ADD_POLICY expression parameter to apply the policy on an Oracle Application Express session state:
 - V, which is a synonym for the APEX UTIL.GET SESSION STATE function
 - NV, which is a synonym for the APEX UTIL.GET NUMERIC SESSION STATE function

If you want redaction to take place when the querying user is *not* within the context of an APEX application (when the query is issued from outside the APEX framework, for example directly through SQL*Plus), then use an IS NULL clause as shown in the preceding example.

For example, to set the <code>DBMS_REDACT.ADD_POLICY</code> expression parameter, if you want redaction to take place when the querying user is not within the context of an APEX application (when the query is issued from outside the APEX framework, for example directly through SQL*Plus), then use an <code>IS NULL</code> clause, as follows:

```
expression => 'V(''APP_USER'') != ''mavis@example.com'' or V(''APP_USER'') is null'
```

You can, for example, use these functions to redact data based on a job or a privilege role that is stored in a session state in an APEX application.

Oracle APEX API Reference

15.5.7 Applying the Redaction Policy to All Users

You can apply the policy irrespective of the context to any user, with no filtering.

However, be aware that user SYS and users who have the EXEMPT REDACTION POLICY system or schema privilege are always except from Oracle Data Redaction policies.

• To apply the policy to users who are not SYS or have been granted the EXEMPT REDACTION POLICY privilege, write the DBMS_REDACT.ADD_POLICY expression parameter to evaluate to TRUE.

For example:

```
expression => '1=1'
```

This setting is the default for the expression parameter. If you omit it, then Oracle Database performs the redaction but does not evaluate the policy expression. As a result, the performance of fetching from the target column is improved.

Related Topics

Exemption of Users from Oracle Data Redaction Policies
 You can exempt users from having Oracle Data Redaction policies applied to the data they access.

15.6 Creating and Managing Multiple Named Policy Expressions

A named, centrally managed Oracle Data Redaction policy expression can be used in multiple redaction policies and applied to multiple tables or views.

- About Data Redaction Policy Expressions to Define Conditions
 A named Oracle Data Redaction policy expression is designed to work as an alternative to the policy expression that is used in existing Data Redaction policies.
- Creating and Applying a Named Data Redaction Policy Expression
 The DBMS_REDACT.CREATE_POLICY_EXPRESSION and
 DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL enable you to create and apply a named Data Redaction policy expression.
- Updating a Named Data Redaction Policy Expression
 You can use the DBMS_REDACT.UPDATE_POLICY_EXPRESSION procedure to update a
 Data Redaction policy expression. The update takes place immediately and is
 reflected in all the columns that use the policy expression.
- Dropping a Named Data Redaction Expression Policy
 You can use the DBMS_REDACT.DROP_POLICY_EXPRESSION procedure to drop a Data
 Redaction expression policy.
- Tutorial: Creating and Sharing a Named Data Redaction Policy Expression
 This tutorial shows how to create an Oracle Data Redaction policy expression, apply it to multiple tables, and centrally manage the policy expression.

15.6.1 About Data Redaction Policy Expressions to Define Conditions

A named Oracle Data Redaction policy expression is designed to work as an alternative to the policy expression that is used in existing Data Redaction policies.

A named policy expression enables you to redact data based on runtime conditions. This type of policy can only affect whether or not redaction takes place on columns of the table or view on which the redaction policy is defined. By default, a Data Redaction policy expression applies to all the columns that belong to the Data Redaction policy defined on that table or view. Alternatively, you can choose to create and associate a policy expression for individual columns of a table or view. These column level expressions are called named policy expressions; in other words, a policy expression with a name. A named policy expressions has the following properties:

You can use Data Redaction policy expressions in the following ways.:

- A single Data Redaction policy expression can be shared by more than one Data Redaction policy by applying it to columns that are a part of separate Data Redaction policies.
- Each named policy expression can be associated with multiple columns of the same or different tables or views.
- Each named policy expression can be associated with columns within the same or different Data Redaction policies.
- The named policy expression overrides the default policy expression of the associated columns. The default policy expression still applies to redaction columns that have no named policy expressions applied to them.
- Any updates made to a named policy expression apply to all of the column associations
 of the expression.
- You cannot associate multiple named policy expressions for the same column.
- In a multitenant environment, you cannot associate named policy expressions with columns in a different pluggable database (PDB).

The column to which you apply a named policy expression must already be redacted by a Data Redaction policy. After the named policy expression is applied, the result of its evaluation takes precedence over that of the default policy expression when deciding whether or not to redact the column. When you modify a named policy expression, the changes are applied to all the tables and views that use it. In a multitenant environment, as with Data Redaction policies, a named policy expression is valid only in the PDB in which it was created, and can only be applied to columns of objects within the PDB in which it was created.

Table 15-7 describes the DBMS_REDACT PL/SQL procedures that you can use to create and manage named policy expressions. To find information about policy expressions, query the REDACTION EXPRESSIONS data dictionary view.

Table 15-7 DBMS_REDACT Policy Expression Procedures

Procedure	Description
DBMS_REDACT.CREATE_POLICY_EXPRESSION	Creates a Data Redaction policy expression
DBMS_REDACT.UPDATE_POLICY_EXPRESSION	Updates a Data Redaction policy expression

Table 15-7 (Cont.) DBMS_REDACT Policy Expression Procedures

Procedure	Description
DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL	Applies a Data Redaction policy expression to a table or a view column
DBMS_REDACT.DROP_POLICY_EXPRESSION	Drops a Data Redaction policy expression

 Managing Named Data Redaction Policy Expressions Using Enterprise Manager You can manage Oracle Data Redaction policy expressions in Enterprise Manager Cloud Control.

15.6.2 Creating and Applying a Named Data Redaction Policy Expression

The DBMS_REDACT.CREATE_POLICY_EXPRESSION and DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL enable you to create and apply a named Data Redaction policy expression.

- Connect to the PDB as a user who has the EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY system or schema privilege.
- Ensure that the COMPATIBLE initialization parameter is set to 12.2.0.0 or later.
 To find the current COMPATIBLE setting, use the SHOW PARAMETER command.
- 3. To create the policy expression, run the DBMS_REDACT.CREATE_POLICY_EXPRESSION procedure.

For example:

4. Run the DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL procedure to apply the policy expression to a table or view column.

For example, assume that you have already created a Data Redaction policy on the SALARY column of the HR. EMPLOYEES table, as follows:

Then you can apply the policy expression to the SALARY column as follows:

In this specification:

- object_schema: Specifies the schema of the object on which the policy expression
 will be used. If you omit this setting (or enter NULL), then Oracle Database uses the
 name of the current schema.
- object_name: Specifies the name of the table or view to be used for the policy expression.
- column name: Specifies the column to which you want to apply the policy expression.
- policy expression name: Specifies the name of the policy expression.

After you create an Oracle Data Redaction policy expression, you can apply it to a column of a table or view which is part of an existing Data Redaction policy.

15.6.3 Updating a Named Data Redaction Policy Expression

You can use the <code>DBMS_REDACT.UPDATE_POLICY_EXPRESSION</code> procedure to update a Data Redaction policy expression. The update takes place immediately and is reflected in all the columns that use the policy expression.

You can query the REDACTION_EXPRESSIONS data dictionary view to find existing Data Redaction policy expressions.

- 1. Connect to the PDB as a user who has the EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY system or schema privilege.
- **2.** Ensure that the COMPATIBLE initialization parameter is set to 12.2.0.0 or later.

To find the current COMPATIBLE setting, use the SHOW PARAMETER command.

3. Run the DBMS REDACT. UPDATE POLICY EXPRESSION procedure to perform the update.

For example:

```
BEGIN

DBMS_REDACT.UPDATE_POLICY_EXPRESSION(
  policy_expression_name => 'redact_pol',
  expression => '1=0');
```



```
END;
```

15.6.4 Dropping a Named Data Redaction Expression Policy

You can use the DBMS_REDACT.DROP_POLICY_EXPRESSION procedure to drop a Data Redaction expression policy.

You can query the REDACTION_EXPRESSIONS data dictionary view to find the existing Data Redaction policy expressions.

- Connect to the PDB as a user who has the EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY system or schema privilege.
- 2. Ensure that the COMPATIBLE initialization parameter is set to 12.2.0.0 or later.
 - To find the current COMPATIBLE setting, use the SHOW PARAMETER command.
- Remove the named policy expression's association with any table or view column.

You cannot drop a policy expression if it is associated with an existing table or view column. To remove a given column's association with a named policy expression (to revert to redacting that column based on the evaluation result of the default policy expression), you must set the policy_expression_name parameter of the DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL procedure to NULL.

For example:

4. Run DBMS REDACT. DROP POLICY EXPRESSION to drop the policy expression.

For example:

```
BEGIN
DBMS_REDACT.DROP_POLICY_EXPRESSION(
  policy_expression_name => 'redact_pol');
END;
/
```

15.6.5 Tutorial: Creating and Sharing a Named Data Redaction Policy Expression

This tutorial shows how to create an Oracle Data Redaction policy expression, apply it to multiple tables, and centrally manage the policy expression.

• Step 1: Create Users for This Tutorial

You must create two users for this tutorial: dr_admin , who will create the Oracle Data Redaction policies, and hr clerk, who will test them.

- Step 2: Create an Oracle Data Redaction Policy
 User dr_admin is ready to create an Oracle Data Redaction policy to protect the
 HR.EMPLOYEES and HR.JOBS tables.
- Step 3: Test the Oracle Data Redaction Policy
 User hr clerk is ready to query the tables that have redacted data.
- Step 4: Create and Apply a Policy Expression to the Redacted Table Columns
 Next, user dr_admin is ready to create a Data Redaction policy expression
 (hr_redact_pol) and apply it to two of the three redacted table columns.
- Step 5: Test the Data Redaction Policy Expression
 User hr clerk is now ready to test the hr redact pol policy expression.
- Step 6: Modify the Data Redaction Policy Expression
 User dr_admin decides to modify the Data Redaction policy expression so that user
 hr clerk will get redacted data, not user HR.
- Step 7: Test the Modified Policy Expression
 Users HR and hr clerk are ready to test the modified Data Redaction policy expression.
- Step 8: Remove the Components of This Tutorial
 If you do not need the components of this tutorial, then you can remove them.

15.6.5.1 Step 1: Create Users for This Tutorial

You must create two users for this tutorial: dr_admin, who will create the Oracle Data Redaction policies, and hr clerk, who will test them.

Before you begin this tutorial, ensure that the COMPATIBLE initialization parameter is set to 12.2.0.0 or later. You can check this setting by using the SHOW PARAMETER command.

- 1. Connect to a PDB as user SYS with the SYSDBA administrative privilege.
- 2. Create the dr admin and hr clerk user accounts.

```
GRANT CREATE SESSION TO dr_admin IDENTIFIED BY password; GRANT CREATE SESSION TO hr clerk IDENTIFIED BY password;
```

3. Grant the following privileges to the dr admin user:

```
GRANT EXECUTE ON DBMS_REDACT TO dr_admin; GRANT ADMINISTER REDACTION TO dr admin;
```

- 4. Connect as user HR.
- 5. Grant hr clerk the SELECT privilege on the EMPLOYEES and JOBS tables.

```
GRANT SELECT on EMPLOYEES to hr_clerk; GRANT SELECT on JOBS to hr clerk;
```

15.6.5.2 Step 2: Create an Oracle Data Redaction Policy

User ${\tt dr_admin}$ is ready to create an Oracle Data Redaction policy to protect the HR.EMPLOYEES and HR.JOBS tables.

- Connect to the PDB as user dr admin.
- 2. Create the hr_emp_redact_comp_pol policy, which will perform full redaction of the HR.EMPLOYEES.SALARY column.

3. Alter the hr_redact_comp_pol policy to also redact the COMMISSION_PCT column of the HR.EMPLOYEES table.

4. Create the hr_jobs_redact_comp_pol policy for the max_salary column of the HR.JOBS table.

```
BEGIN

DBMS_REDACT.ADD_POLICY(

object_schema => 'hr',

object_name => 'jobs',

column_name => 'max_salary',

policy_name => 'hr_jobs_redact_comp_pol',

function_type => DBMS_REDACT.FULL,

expression => '1=1');

END;
```

At this stage, the data in the HR.EMPLOYEES.SALARY, HR.EMPLOYEES.COMMISSION_PCT, and HR.JOBS.MAX SALARY columns are redacted.

15.6.5.3 Step 3: Test the Oracle Data Redaction Policy

User hr clerk is ready to query the tables that have redacted data.

- 1. Connect as user hr clerk.
- 2. Query the HR.EMPLOYEES table.

```
SELECT SALARY, COMMISSION PCT FROM HR.EMPLOYEES WHERE SALARY > 15000;
```

The output should be as follows:

```
SALARY COMMISSION_PCT

0
0
0
0
```

3. Query the HR. JOBS table.

```
SELECT MAX_SALARY FROM HR.JOBS WHERE MAX_SALARY > 15000;
```


The output should be as follows:

```
MAX_SALARY 0 0 0 0 0 0 0 0 0 0 0
```

15.6.5.4 Step 4: Create and Apply a Policy Expression to the Redacted Table Columns

Next, user dr_admin is ready to create a Data Redaction policy expression (hr_redact_pol) and apply it to two of the three redacted table columns.

This policy expression will enable user hr clerk to view the redacted data.

- Connect as user dr admin.
- 2. Create the policy expression.

```
BEGIN

DBMS_REDACT.CREATE_POLICY_EXPRESSION(
    policy_expression_name => 'hr_redact_pol',
    expression => 'SYS_CONTEXT(''USERENV'',''SESSION_USER'') !=
''HR_CLERK''');
END;
//
```

This expression returns FALSE for the hr_clerk user, which enables the hr_clerk user to view actual data in the HR.EMPLOYEES and HR.JOBS tables that are subject to the Data Redaction policies.

3. Apply the hr_redact_pol policy expression to the HR.EMPLOYEES.SALARY column.

4. Apply the hr redact pol policy expression to the HR. JOBS. MAX SALARY column.

User hr_clerk can view data in the HR.EMPLOYEES.SALARY and HR.JOBS.MAX_SALARY, but the data in the HR.EMPLOYEES.COMMISSION PCT column will still be redacted for this user.

15.6.5.5 Step 5: Test the Data Redaction Policy Expression

User hr clerk is now ready to test the hr redact pol policy expression.

- Connect as user hr clerk.
- 2. Query the HR. EMPLOYEES table.

```
SELECT SALARY, COMMISSION PCT FROM HR.EMPLOYEES WHERE SALARY > 15000;
```

The output should be as follows:

User hr_clerk now can view the SALARY column data, but still has no access to the <code>COMMISSION PCT</code> column data.

3. Query the HR. JOBS table.

```
SELECT MAX SALARY FROM HR.JOBS WHERE MAX SALARY > 15000;
```

The output should be as follows:

```
MAX_SALARY
40000
30000
16000
16000
20080
```

User hr clerk now can view the MAX SALARY column data.

15.6.5.6 Step 6: Modify the Data Redaction Policy Expression

User dr_admin decides to modify the Data Redaction policy expression so that user hr_clerk will get redacted data, not user HR.

- 1. Connect as user dr admin.
- 2. Modify the hr redact pol policy as follows:

```
BEGIN

DBMS_REDACT.UPDATE_POLICY_EXPRESSION(
   policy_expression_name => 'hr_redact_pol',
   expression => 'SYS_CONTEXT(''USERENV'',''SESSION_USER'') !=
''HR''');
END;
//
```

15.6.5.7 Step 7: Test the Modified Policy Expression

Users ${\tt HR}$ and ${\tt hr_clerk}$ are ready to test the modified Data Redaction policy expression.

- Connect as user HR.
- Query the HR.EMPLOYEES table.

```
SELECT SALARY, COMMISSION PCT FROM HR.EMPLOYEES WHERE SALARY > 15000;
```

The output should be as follows:

User HR now has access to the actual data. A query by HR on the HR.JOBS.MAX_SALARY column will produce similar results.

```
SELECT MAX_SALARY FROM HR.JOBS WHERE MAX_SALARY > 15000;

MAX_SALARY
------
40000
30000
16000
16000
20080
```

- 3. Connect as user hr_clerk.
- 4. Query the HR.EMPLOYEES and HR.JOBS tables and then observe the results.

```
SELECT SALARY, COMMISSION_PCT FROM HR.EMPLOYEES WHERE SALARY > 15000;

SALARY COMMISSION_PCT

0
0
0
SELECT MAX_SALARY FROM HR.JOBS WHERE MAX_SALARY > 15000;

MAX_SALARY
------
```

0 0 0

15.6.5.8 Step 8: Remove the Components of This Tutorial

If you do not need the components of this tutorial, then you can remove them.

- 1. Connect as user dr admin.
- 2. Modify the policy expression so that it is no longer associated with the table columns that are associated with the expression.

To do so, you must set the policy_expression_name parameter to NULL.

```
BEGIN
DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL(
   object_schema => 'hr',
```


3. Drop the policy expression.

```
BEGIN
DBMS_REDACT.DROP_POLICY_EXPRESSION(
  policy_expression_name => 'hr_redact_pol');
END;
/
```

4. Drop the hr_emp_redact_comp_pol **and** hr_jobs_redact_comp_pol **Data** Redaction policies.

```
BEGIN
  DBMS_REDACT.DROP_POLICY (
    object_schema => 'hr',
    object_name => 'employees',
    policy_name => 'hr_emp_redact_comp_pol');
END;
/

BEGIN
  DBMS_REDACT.DROP_POLICY (
    object_schema => 'hr',
    object_name => 'jobs',
    policy_name => 'hr_jobs_redact_comp_pol');
END;
/
```

- 5. Connect as the SYSTEM user or a user who has privileges to drop user accounts.
- 6. Drop the dr admin and hr clerk user accounts.

```
DROP USER dr_admin;
DROP USER hr clerk;
```

15.7 Creating a Full Redaction Policy and Altering the Full Redaction Value

You can create a full redaction policy to redact all contents in a data column, and optionally, you can alter the default full redaction value.

- Creating a Full Redaction Policy
 A full data redaction policy redacts all the contents of a data column.
- Altering the Default Full Data Redaction Value
 The DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure alters the default full data redaction value.

15.7.1 Creating a Full Redaction Policy

A full data redaction policy redacts all the contents of a data column.

- About Creating Full Data Redaction Policies
 To set a redaction policy to redact all data in the column, you must set the function_type parameter to DBMS REDACT.FULL.
- Syntax for Creating a Full Redaction Policy
 The DBMS_REDACT.ADD_POLICY procedure enables you to create a full redaction policy.
- Example: Full Redaction Policy
 You can use the DBMS_REDACT.ADD_POLICY PL/SQL procedure to create a full redaction
 policy.
- Example: Fully Redacted Character Values
 You can use the DBMS_REDACT.ADD_POLICY PL/SQL procedure to create a policy that fully redacts character values.

15.7.1.1 About Creating Full Data Redaction Policies

To set a redaction policy to redact all data in the column, you must set the function_type parameter to DBMS REDACT.FULL.

By default, NUMBER data type columns are replaced with zero (0) and character data type columns are replaced with a single space (). You can modify this default by using the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure.

Related Topics

Altering the Default Full Data Redaction Value
 The DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure alters the default full data redaction value.

15.7.1.2 Syntax for Creating a Full Redaction Policy

The DBMS_REDACT.ADD_POLICY procedure enables you to create a full redaction policy.

The DBMS REDACT.ADD POLICY fields for creating a full data redaction policy are as follows:

In this specification:

- object_schema, object_name, column_name, policy_name, expression, enable: See
 General Syntax of the DBMS REDACT.ADD POLICY Procedure.
- function_type: Specifies the function used to set the type of redaction. Enter DBMS REDACT.FULL.

If you omit the function_type parameter, then the default redaction function type setting is DBMS REDACT.FULL.

Remember that the data type of the column determines which <code>function_type</code> settings that you are permitted to use. See Comparison of Full, Partial, and Random Redaction Based on Data Types.

15.7.1.3 Example: Full Redaction Policy

You can use the DBMS_REDACT.ADD_POLICY PL/SQL procedure to create a full redaction policy.

Example 15-1 shows how to use full redaction for all the values in the HR.EMPLOYEES table COMMISSION_PCT column. Because the expression parameter in this example always evaluates to TRUE, the data redaction policy is applied to any user querying the table except for users who have been granted the EXEMPT REDACTION POLICY system or schema privilege, or the SYSDBA administrative privilege.

Example 15-1 Full Data Redaction Policy

Query and redacted result:

```
SELECT COMMISSION_PCT FROM HR.EMPLOYEES;

COMMISSION_PCT
----0
0
0
0
```

Related Topics

Exemption of Users from Oracle Data Redaction Policies
 You can exempt users from having Oracle Data Redaction policies applied to the data they access.

15.7.1.4 Example: Fully Redacted Character Values

You can use the <code>DBMS_REDACT.ADD_POLICY</code> PL/SQL procedure to create a policy that fully redacts character values.

Example 15-2 shows how to redact fully the user IDs of the user_id column in the mavis.cust_info table. The user_id column is of the VARCHAR2 data type. The output is a blank string. The expression setting enables users who have the MGR role to view the user IDs.

Example 15-2 Fully Redacted Character Values

```
BEGIN

DBMS_REDACT.ADD_POLICY(
   object_schema => 'mavis',
   object_name => 'cust_info',
   column_name => 'user_id',
   policy_name => 'redact_cust_user_ids',
   function_type => DBMS_REDACT.FULL,
   expression => 'SYS_CONTEXT(''SYS_SESSION_ROLES'',''MGR'') = ''FALSE''');
END;
//
```

Query and redacted result:

```
SELECT user_id FROM mavis.cust_info;
USER_ID
-----
0
0
0
```

15.7.2 Altering the Default Full Data Redaction Value

The DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure alters the default full data redaction value.

- About Altering the Default Full Data Redaction Value
 You can alter the default displayed values for full Data Redaction polices.
- Syntax for the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES Procedure The DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure accommodates the standard supported Oracle Database data types.
- Modifying the Default Full Data Redaction Value
 To modify the default full data redaction value, use the
 DBMS REDACT.UPDATE FULL REDACTION VALUES procedure.

15.7.2.1 About Altering the Default Full Data Redaction Value

You can alter the default displayed values for full Data Redaction polices.

By default, 0 is the redacted value when Oracle Database performs full redaction (DBMS_REDACT.FULL) on a column of the NUMBER data type. If you want to change it to another value (for example, 7), then you can run the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure to modify this value. The modification applies to all of the Data Redaction policies in the current database instance. After you modify a value, you must restart the database for it to take effect. You can find the current values by querying the REDACTION_VALUES_FOR_TYPE_FULL_data dictionary view.

Be aware that this change affects all Data Redaction policies in the database that use full data redaction. Before you alter the default full data redaction value, examine the affect that this change would have on existing full Data Redaction policies.

15.7.2.2 Syntax for the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES Procedure

The DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure accommodates the standard supported Oracle Database data types.

The syntax is as follows:

```
DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES (
number_val IN NUMBER NULL,
binfloat_val IN BINARY_FLOAT NULL,
bindouble_val IN BINARY_DOUBLE NULL,
char_val IN CHAR NULL,
varchar_val IN VARCHAR2 NULL,
nchar_val IN NCHAR NULL,
nvarchar_val IN NVARCHAR2 NULL,
ta_val IN DATE NULL,
ts_val IN TIMESTAMP NULL,
tswtz_val IN TIMESTAMP WITH TIME ZONE NULL,
blob_val IN BLOB NULL,
clob_val IN CLOB NULL,
nclob_val IN NCLOB NULL,
boolean_val IN BOOLEAN NULL);
```

In this specification:

- number val modifies the default value for columns of the NUMBER data type.
- binfloat_val modifies the default value for columns of the BINARY_FLOAT data type.
- bindouble_val modifies the default value for columns of the BINARY_DOUBLE data type.
- char val modifies the default value for columns of the CHAR data type.
- varchar val modifies the default value for columns of the VARCHAR2 data type.
- nchar val modifies the default value for columns of the NCHAR data type.
- nvarchar val modifies the default value for columns of the NVARCHAR2 data type.
- date val modifies the default value for columns of the DATE data type.
- ts val modifies the default value for columns of the TIMESTAMP data type.
- tswtz_val modifies the default value for columns of the TIMESTAMP WITH TIME ZONE data type.
- blob val modifies the default value for columns of the BLOB data type.
- clob val modifies the default value for columns of the CLOB data type.
- nclob modifies the default value for columns of the NCLOB data type.
- boolean val modifies the default value for columns of the BOOLEAN data type.

15.7.2.3 Modifying the Default Full Data Redaction Value

To modify the default full data redaction value, use the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure.

- 1. Connect to the PDB as a user who has the EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY system or schema privilege.
- 2. Check the value that you want to change.

For example, to check the current value for columns that use the NUMBER data type:

```
SELECT NUMBER_VALUE FROM REDACTION_VALUES_FOR_TYPE_FULL;

NUMBER_VALUE
-----
0
```

3. Run the DBMS REDACT.UPDATE FULL REDACTION VALUES procedure to modify the value.

For example:

```
EXEC DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES (number_val => 7);
```

4. Close and then re-open the PDB.

```
ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE; ALTER PLUGGABLE DATABASE pdb name OPEN;
```

15.8 Creating a Nullify Redaction Policy

You can create Oracle Data Redaction policies that return null values for the displayed value of the table or view column.

- About Creating a Policy That Returns Null Values
 - The $\mbox{DBMS_REDACT.NULLIFY function_type}$ parameter redacts all the data in a column and replaces it with null values.
- Syntax for Creating a Nullify Redaction Policy
 - The <code>DBMS_REDACT.ADD_POLICY</code> procedure can create a redaction policy that performs a full redaction and displays null values for the redacted columns.
- Example: Redaction Policy That Returns Null Values
 The DBMS_REDACT.ADD_POLICY procedure will return null values for the
 COMMISSION PCT column of the HR.EMPLOYEES table.

15.8.1 About Creating a Policy That Returns Null Values

The DBMS_REDACT.NULLIFY function_type parameter redacts all the data in a column and replaces it with null values.

You can use this function type on all supported column types that the <code>DBMS_REDACT.FULL</code> function type supports. It also supports the <code>CLOB</code> and <code>NCLOB</code> data types. To use the <code>DBMS_REDACT.NULLIFY</code> function, you must first ensure that the <code>COMPATIBLE</code> parameter is set to <code>12.2.0.0</code> or later.

15.8.2 Syntax for Creating a Nullify Redaction Policy

The <code>DBMS_REDACT.ADD_POLICY</code> procedure can create a redaction policy that performs a full redaction and displays null values for the redacted columns.

The syntax for using DBMS REDACT.ADD POLICY to return null values is as follows:

In this specification:

- object_schema, object_name, column_name, policy_name, expression, enable: See General Syntax of the DBMS_REDACT.ADD_POLICY Procedure.
- function_type: Specifies the function used to set the type of redaction. Enter DBMS REDACT.NULLIFY.

If you omit the ${\tt function_type}$ parameter, then the default setting is DBMS REDACT.FULL.

Remember that the data type of the column determines which <code>function_type</code> settings that you are permitted to use. See Comparison of Full, Partial, and Random Redaction Based on Data Types.

15.8.3 Example: Redaction Policy That Returns Null Values

The DBMS_REDACT.ADD_POLICY procedure will return null values for the COMMISSION PCT column of the HR.EMPLOYEES table.

The expression parameter applies the policy to any user who queries the table, except for users who have been granted the EXEMPT REDACTION POLICY system or schema privilege.

Example 15-3 shows how to create the Oracle Data Redaction policy.

Example 15-3 Redaction Policy That Returns Null Values

Query and redacted result:

```
SELECT COMMISSION_PCT FROM HR.EMPLOYEES;
COMMISSION_PCT
```


• Exemption of Users from Oracle Data Redaction Policies
You can exempt users from having Oracle Data Redaction policies applied to the data they access.

15.9 Creating a Partial Redaction Policy

In partial data redaction, you can redact portions of data for different kinds of data types.

- About Creating Partial Redaction Policies
 In partial data redaction, only a portion of the data, such as the first five digits of an identification number, are redacted.
- Syntax for Creating a Partial Redaction Policy
 The DBMS_REDACT.ADD_POLICY statement enables you to create policies that redact specific parts of the data returned to the application.
- Creating Partial Redaction Policies Using Fixed Character Formats
 The DBMS_REDACT.ADD_POLICY function_parameters parameter enables you to use fixed character formats.
- Creating Partial Redaction Policies Using Character Data Types
 The DBMS_REDACT.ADD_POLICY function_parameters parameter enables you to redact character data types.
- Creating Partial Redaction Policies Using Number Data Types
 The DBMS_REDACT.ADD_POLICY function_parameters parameter can redact number data types.
- Creating Partial Redaction Policies Using Date-Time Data Types
 The DBMS_REDACT.ADD_POLICY function_parameters parameter can redact date-time data types.

15.9.1 About Creating Partial Redaction Policies

In partial data redaction, only a portion of the data, such as the first five digits of an identification number, are redacted.

For example, you can redact most of a credit card number with asterisks (*), except for the last 4 digits. You can create policies for columns that use character, number, or date-time data types. For policies that redact character data types, you can use fixed character redaction formats. If you have the Enterprise Manager for Oracle Database 12.1.0.7 plug-in deployed on your system, then you can also create and save custom redaction formats.

In previous releases, the term shortcut was used for the term format.

15.9.2 Syntax for Creating a Partial Redaction Policy

The DBMS_REDACT.ADD_POLICY statement enables you to create policies that redact specific parts of the data returned to the application.

The <code>DBMS_REDACT.ADD_POLICY</code> fields for creating a partial redaction policy are as follows:

In this specification:

- object_schema, object_name, column_name, policy_name, expression, enable:
 See General Syntax of the DBMS REDACT.ADD POLICY Procedure
- function_type: Specifies the function used to set the type of redaction. Enter DBMS REDACT.PARTIAL.
- function_parameters: The parameters that you set here depend on the data type
 of the column specified for the column_name parameter. See the following sections
 for details:
 - Creating Partial Redaction Policies Using Fixed Character Formats
 - Creating Partial Redaction Policies Using Character Data Types
 - Creating Partial Redaction Policies Using Number Data Types
 - Creating Partial Redaction Policies Using Date-Time Data Types

15.9.3 Creating Partial Redaction Policies Using Fixed Character Formats

The DBMS_REDACT.ADD_POLICY function_parameters parameter enables you to use fixed character formats.

- Settings for Fixed Character Formats
 Oracle Data Redaction provides special predefined formats to configure policies that use fixed characters.
- Example: Partial Redaction Policy Using a Fixed Character Format
 You can use the DBMS_REDACT.ADD_POLICY PL/SQL procedure to create a partial redaction policy that uses a fixed character format.

15.9.3.1 Settings for Fixed Character Formats

Oracle Data Redaction provides special predefined formats to configure policies that use fixed characters.

Table 15-8 describes <code>DBMS_REDACT.ADD_POLICY</code> function_parameters parameter formats that you can use for commonly redacted identity numbers (such as Social Security numbers or Canadian Social Insurance Numbers), postal codes, and credit cards that use either the <code>VARCHAR2</code> or <code>NUMBER</code> data types for their columns.

Table 15-8 Partial Fixed Character Redaction Formats

Format	Description
DBMS_REDACT.REDACT_US_SSN_F5	Redacts the first 5 numbers of Social Security numbers when the column is a VARCHAR2 data type. For example, the number 987-65-4320 becomes XXX-XX-4320.
DBMS_REDACT.REDACT_US_SSN_L4	Redacts the last 4 numbers of Social Security numbers when the column is a VARCHAR2 data type. For example, the number 987-65-4320 becomes 987-65-XXXX.
DBMS_REDACT.REDACT_US_SSN_ENTIRE	Redacts the entire Social Security number when the column is a VARCHAR2 data type. For example, the number 987-65-4320 becomes XXX-XX-XXXX.
DBMS_REDACT.REDACT_NUM_US_SSN_F5	Redacts the first 5 numbers of Social Security numbers when the column is a NUMBER data type. For example, the number 987654320 becomes XXXXX4320.
DBMS_REDACT.REDACT_NUM_US_SSN_L4	Redacts the last 4 numbers of Social Security numbers when the column is a NUMBER data type. For example, the number 987654320 becomes 98765XXXX.
DBMS_REDACT.REDACT_NUM_US_SSN_ENTIRE	Redacts the entire Social Security number when the column is a NUMBER data type. For example, the number 987654320 becomes XXXXXXXXX.
DBMS_REDACT.REDACT_SIN_NUMBER	Redacts the Canadian Social Insurance number by replacing the first 6 digits by 9 (number). For example, 123456789 is redacted to 999999789.
DBMS_REDACT.REDACT_SIN_UNFORMATTED	Redacts the Canadian Social Insurance number by replacing the first 6 digits by X (string). For example, 123456789 is redacted to XXXXXX789.
DBMS_REDACT.REDACT_SIN_FORMATTED	Redacts the Canadian Social Insurance Number by replacing the first 6 digits by X (string). For example, 123-456-789 is redacted to XXX-XXX-789.
DBMS_REDACT.REDACT_UK_NIN_FORMATTED	Redacts the UK National Insurance number by replacing the first 6 digits by X (string) but leaving the alphabetic characters as is. For example, ET 27 02 23 D is redacted to ET XX XX XX D.

Table 15-8 (Cont.) Partial Fixed Character Redaction Formats

Format	Description
DBMS_REDACT.REDACT_UK_NIN_UNFORMATTED	Redacts the UK National Insurance number by replacing the first 6 digits by X (string) and leaving the alphabetic characters as is. For example, ET270223D is redacted to ETXXXXXXXD.
DBMS_REDACT.REDACT_CCN_FORMATTED	Redacts the credit card number (other than American Express) by replacing everything but the last 4 digits by *. For example, the credit card number 5105-1051-0510-5100 is redacted to ****-****-5100.
DBMS_REDACT.REDACT_CCN_NUMBER	Redacts the credit card number (other than American Express) by replacing everything but the last 4 digits by 9. For example, the credit card number 5105105105105100 is redacted to 999999999995100. Note that the last four digits are not redacted.
DBMS_REDACT.REDACT_CCN16_F12	Redacts a 16-digit credit card number (other than American Express), leaving the last 4 digits displayed. For example, 5105 1051 0510 5100 becomes ****-***-5100.
DBMS_REDACT.REDACT_AMEX_CCN_FORMATTED	Redacts the American Express credit card number by replacing the digits with * except the last 5 digits. For example, the credit card number 3782 822463 10005 is redacted to **** ****** 10005.
DBMS_REDACT.REDACT_AMEX_CCN_NUMBER	Redacts the American Express Credit Card Number by replacing the digits with 0 except the last 5 digits. For example, the credit card number 3782 822463 10005 is redacted to 0000 000000 10005.
DBMS_REDACT.REDACT_ZIP_CODE	Redacts a 5-digit postal code when the column is a VARCHAR2 data type. For example, 95476 becomes XXXXX.
DBMS_REDACT.REDACT_NUM_ZIP_CODE	Redacts a 5-digit postal code when the column is a NUMBER data type. For example, 95476 becomes 99999.
DBMS_REDACT.REDACT_DATE_EPOCH	Redacts all dates to 01-JAN-70.
DBMS_REDACT.REDACT_NA_PHONE_FORMATTED	Redacts the North American phone number by leaving the area code, but replacing everything else with X. For example, 650-555-0100 is redacted to 650-XXX-XXXX.
DBMS_REDACT.REDACT_NA_PHONE_NUMBER	Redacts the North American phone number by leaving the area code, but replacing everything else with 0. For example, 6505550100 gets redacted to 6500000000.
DBMS_REDACT.REDACT_NA_PHONE_UNFORMATT ED	Redacts the North American phone number by leaving the area code, but replacing everything else with X. For example, 6505550100 is redacted to 650XXXXXXXX.

Table 15-8 (Cont.) Partial Fixed Character Redaction Formats

Format	Description
DBMS_REDACT.REDACT_DATE_MILLENNIUM	Redacts dates that are in the DD-MON-YY format to 01-JAN-00 (January 1, 2000).

General Syntax of the DBMS_REDACT.ADD_POLICY Procedure
 To create a Data Redaction policy, you must use the DBMS_REDACT.ADD_POLICY procedure.

15.9.3.2 Example: Partial Redaction Policy Using a Fixed Character Format

You can use the <code>DBMS_REDACT.ADD_POLICY</code> PL/SQL procedure to create a partial redaction policy that uses a fixed character format.

Example 15-4 shows how Social Security numbers in a VARCHAR2 data type column can be redacted using the REDACT US SSN F5 format.

Example 15-4 Partially Redacted Character Values

Query and redacted result:

```
SELECT ssn FROM mavis.cust_info;

SSN
-----
XXX-XX-4320
XXX-XX-4323
XXX-XX-4325
XXX-XX-4325
```

15.9.4 Creating Partial Redaction Policies Using Character Data Types

The DBMS_REDACT.ADD_POLICY function_parameters parameter enables you to redact character data types.

Settings for Character Data Types
 Oracle Data Redaction provides special settings to configure policies that use character data types.

• Example: Partial Redaction Policy Using a Character Data Type
The DBMS_REDACT.ADD_POLICY PL/SQL procedure can create a partial redaction
policy that uses a character data type.

15.9.4.1 Settings for Character Data Types

Oracle Data Redaction provides special settings to configure policies that use character data types.

When you set the DBMS_REDACT.ADD_POLICY function_parameters parameter to define partial redaction of character data types, enter values for the following settings in the order shown. Separate each value with a comma

Be aware that you must use a fixed width character set for the partial redaction. In other words, each character redacted must be replaced by another of equal byte length. If you want to use a variable-length character set (for example, UTF-8), then you must use a regular expression-based redaction.

The settings are as follows:

- 1. Input format: Defines how the data is currently formatted. Enter V for each character that potentially can be redacted, such as all of the digits in a credit card number. Enter F for each character that you want to format using a formatting character, such as hyphens or blank spaces in the credit card number. Ensure that each character has a corresponding V or F value. (The input format values are not case-sensitive.)
- 2. Output format: Defines how the displayed data should be formatted. Enter V for each character to be potentially redacted. Replace each F character in the input format with the character that you want to use for the displayed output, such as a hyphen. (The output format values are not case-sensitive.)
- **3. Mask character:** Specifies the character to be used for the redaction. Enter a single character to use for the redaction, such as an asterisk (*).
- **4. Starting digit position:** Specifies the starting V digit position for the redaction.
- **5. Ending digit position:** Specifies the ending V digit position for the redaction. Do not include the F positions when you decide on the ending position value.

For example, the following setting redacts the first 12 v digits of the credit card number $5105\ 1051\ 0510\ 5100$, and replaces the v positions (which are blank spaces) with hyphens to format it in a style normally used for credit card numbers, resulting in v ***-v**-v**-v**-v

Related Topics

Syntax for Creating a Regular Expression-Based Redaction Policy
 The regexp_* parameters of the DBMS_REDACT.ADD_POLICY procedure can create a regular expression-based redaction policy.

General Syntax of the DBMS_REDACT.ADD_POLICY Procedure
 To create a Data Redaction policy, you must use the DBMS_REDACT.ADD_POLICY procedure.

15.9.4.2 Example: Partial Redaction Policy Using a Character Data Type

The DBMS_REDACT.ADD_POLICY PL/SQL procedure can create a partial redaction policy that uses a character data type.

Example 15-5 shows how to redact Social Security numbers that are in a VARCHAR2 data type column and to preserve the character hyphens in the Social Security number.

Example 15-5 Partially Redacted Character Values

Query and redacted result:

```
SELECT ssn FROM mavis.cust_info;

SSN
-----
***-**-4320
***-**-4323
***-**-4325
***-**-4329
```

15.9.5 Creating Partial Redaction Policies Using Number Data Types

The DBMS_REDACT.ADD_POLICY function_parameters parameter can redact number data types.

- Settings for Number Data Types
 - When you set values for the number data type, you must specify a redact character, a starting digit position, and an ending digit position.
- Example: Partial Redaction Policy Using a Number Data Type
 The DBMS_REDACT.ADD_POLICY procedure can create a partial redaction policy that uses a number data type.

15.9.5.1 Settings for Number Data Types

When you set values for the number data type, you must specify a redact character, a starting digit position, and an ending digit position.

For partial redaction of number data types, you can enter values for the following settings for the <code>function_parameters</code> parameter of the <code>DBMS_REDACT.ADD_POLICY</code> procedure, in the order shown.

- 1. Redact character: Specifies the character to display. Enter a number from 0 to 9.
- Starting digit position: Specifies the starting digit position for the redaction, such as 1 for the first digit.
- 3. Ending digit position: Specifies the ending digit position for the redaction.

For example, the following setting redacts the first five digits of the Social Security number 987654321, resulting in 999994321.

```
function_parameters => '9,1,5',
```

Related Topics

General Syntax of the DBMS_REDACT.ADD_POLICY Procedure
 To create a Data Redaction policy, you must use the DBMS_REDACT.ADD_POLICY procedure.

15.9.5.2 Example: Partial Redaction Policy Using a Number Data Type

The <code>DBMS_REDACT.ADD_POLICY</code> procedure can create a partial redaction policy that uses a number data type.

Example 15-6 shows how to partially redact a set of Social Security numbers in the mavis.cust_info table, for any application user who logs in. (Hence, the expression parameter evaluates to TRUE.)

This type of redaction is useful when the application is expecting a formatted number and not a string. In this scenario, the Social Security numbers are in a column of the data type <code>NUMBER</code>. In other words, the <code>ssn</code> column contains numbers only, not other characters such as hyphens or blank spaces.

Example 15-6 Partially Redacted Data Redaction Numeric Values

Query and redacted result:

```
SELECT ssn FROM mavis.cust_info;
SSN
-----
77774320
77774323
```


777774325 777774329

15.9.6 Creating Partial Redaction Policies Using Date-Time Data Types

The DBMS_REDACT.ADD_POLICY function_parameters parameter can redact date-time data types.

- Settings for Date-Time Data Types
 Oracle Data Redaction provides special settings for configuring date-time data types.
- Example: Partial Redaction Policy Using Date-Time Data Type
 The DBMS_REDACT.ADD_POLICY procedure can create a partial redaction policy that uses
 the date-time data type.

15.9.6.1 Settings for Date-Time Data Types

Oracle Data Redaction provides special settings for configuring date-time data types.

For partial redaction of date-time data types, enter values for the following DBMS REDACT.ADD POLICY function parameters parameter settings.

Enter these values in the order shown:

- 1. m: Redacts the month. To redact with a month name, append 1–12 to lowercase m. For example, m5 displays as MAY. To omit redaction, enter an uppercase M.
- 2. d: Redacts the day of the month. To redact with a day of the month, append 1–31 to a lowercase d. For example, d7 displays as 07. If you enter a higher number than the days of the month (for example, 31 for the month of February), then the last day of the month is displayed (for example, 28). To omit redaction, enter an uppercase D.
- 3. y: Redacts the year. To redact with a year, append 1–9999 to a lowercase y. For example, y1984 displays as 84. To omit redaction, enter an uppercase y.
- 4. h: Redacts the hour. To redact with an hour, append 0-23 to a lowercase h. For example, h20 displays as 20. To omit redaction, enter an uppercase H.
- 5. m: Redacts the minute. To redact with a minute, append 0-59 to a lowercase m. For example, m30 displays as 30. To omit redaction, enter an uppercase M.
- 6. s: Redacts the second. To redact with a second, append 0-59 to a lowercase s. For example, s45 displays as 45. To omit redaction, enter an uppercase s.

Related Topics

General Syntax of the DBMS_REDACT.ADD_POLICY Procedure
 To create a Data Redaction policy, you must use the DBMS_REDACT.ADD_POLICY procedure.

15.9.6.2 Example: Partial Redaction Policy Using Date-Time Data Type

The DBMS_REDACT.ADD_POLICY procedure can create a partial redaction policy that uses the date-time data type.

Example 15-7 shows how to partially redact a date. This example redacts the birth year of customers; replacing it with 13, but retaining the remaining values.

Example 15-7 Partially Redacted Data Redaction Using Date-Time Values

Query and redacted result:

```
SELECT birth_date FROM mavis.cust_info;
BIRTH_DATE
07-DEC-13 09.45.40.000000 AM
12-OCT-13 04.23.29.000000 AM
```

15.10 Creating a Regular Expression-Based Redaction Policy

A regular expression-based redaction policy enables you to redact data based on a search-and-replace model.

- About Creating Regular Expression-Based Redaction Policies
 Regular expression-based redaction enables you to search for patterns of data to
 redact.
- Syntax for Creating a Regular Expression-Based Redaction Policy
 The regexp_* parameters of the DBMS_REDACT.ADD_POLICY procedure can create a regular expression-based redaction policy.
- Regular Expression-Based Redaction Policies Using Formats
 The DBMS_REDACT.ADD_POLICY procedure regexp_pattern and regexp_replace_string parameters both support formats.
- Custom Regular Expression Redaction Policies
 You can customize regular expressions in Data Redaction policies.

15.10.1 About Creating Regular Expression-Based Redaction Policies

Regular expression-based redaction enables you to search for patterns of data to redact.

For example, you can use regular expressions to redact email addresses, which can have varying character lengths. It is designed for use with character data only. You can use formats for the search and replace operation, or you can create custom pattern formats.

You cannot use regular expressions to redact a subset of the values in a column. The REGEXP PATTERN (regular expression pattern) must match *all* of the values in order for

the REGEXP_REPLACE_STRING setting to take effect, and the REGEXP_REPLACE_STRING must change the value.

For rows where the REGEXP_PATTERN fails to match, Data Redaction performs DBMS_REDACT.FULL redaction. This mitigates the risk of a mistake in the REGEXP_PATTERN which causes the regular expression to fail to match all of the values in the column, from showing the actual data for those rows which it failed to match.

In addition, if no change to the value occurs as a result of the <code>REGEXP_REPLACE_STRING</code> setting during regular expression replacement operation, Data Redaction performs <code>DBMS_REDACT.FULL</code> redaction.

15.10.2 Syntax for Creating a Regular Expression-Based Redaction Policy

The regexp_* parameters of the DBMS_REDACT.ADD_POLICY procedure can create a regular expression-based redaction policy.

The <code>DBMS_REDACT.ADD_POLICY</code> fields for creating a regular expression-based data redaction policy are as follows:

In this specification:

- object_schema, object_name, column_name, policy_name, expression, enable: See
 General Syntax of the DBMS REDACT.ADD POLICY Procedure.
- function_type: Specifies the type of redaction. For regular expression based redaction, use either DBMS REDACT.REGEXP or DBMS REDACT.REGEXP WIDTH.

If you use the <code>DBMS_REDACT.REGEXP</code> redaction type, then no truncation occurs. This applies even if the redacted value is wider than the column width, and if the Oracle Call Interface width attribute (<code>OCI_ATTR_CHAR_SIZE</code>) of the column is *not* preserved. (It becomes 4000, just as it does when the <code>REGEXP_REPLACE</code> SQL operator is used on a column.)

Using the DBMS_REDACT.REGEXP_WIDTH redaction type truncates any redacted value that exceeds the width of the column, and ensures that the OCI width attribute of the column (OCI_ATTR_CHAR_SIZE) remains unchanged.

Note the following:

Use the DBMS_REDACT.REGEXP_WIDTH function type if your applications depend on the value of the OCI_ATTR_CHAR_SIZE attribute. For example, applications that are built using the Oracle OLE DB Provider interface are sensitive to the value of the OCI_ATTR_CHAR_SIZE attribute. If you use DBMS_REDACT.REGEXP as the redaction type, then the OCI_ATTR_CHAR_SIZE always becomes 4000. This setting makes it

- unsuitable as the redaction type of policies on tables that are used by Oracle OLE DB based applications. See *Oracle Call Interface Developer's Guide* for more information about Oracle Call Interface parameter attributes.
- When you set the function_type parameter to DBMS_REDACT.REGEXP or DBMS_REDACT.REGEXP_WIDTH, omit the function_parameters parameter from the DBMS_REDACT.ADD_POLICY procedure.
- Specify the regular expression parameters in much the same way that you specify the pattern, replace, position, occurrence, and match_parameter arguments to the REGEXP_REPLACE SQL function. See Oracle Database SQL Language Reference for information about the REGEXP_REPLACE SQL function.
- regexp_pattern: Describes the search pattern for data that must be matched. If it finds a match, then Oracle Database replaces the data as specified by the regexp replace string setting. See the following sections for more information:
 - Regular Expression-Based Redaction Policies Using Formats
 - Custom Regular Expression Redaction Policies
- regexp_replace_string: Specifies how you want to replace the data to be redacted. See the following sections for more information:
 - Regular Expression-Based Redaction Policies Using Formats
 - Custom Regular Expression Redaction Policies
- regexp_position: Specifies the starting position for the string search. The value that you enter must be a positive integer indicating the character of the column_name data where Oracle Database should begin the search. The default is 1 or the DBMS_REDACT.RE_BEGINNING format, meaning that Oracle Database begins the search at the first character of the column_name data.
- regexp_occurrence: Specifies how to perform the search and replace operation.
 The value that you enter must be a non-negative integer indicating the occurrence of the replace operation:
 - If you specify 0 or the DBMS_REDACT.RE_ALL format, then Oracle Database replaces all the occurrences of the match.
 - If you specify the DBMS_REDACT.RE_FIRST format, then Oracle Database replaces the first occurrence of the match.
 - If you specify a positive integer n, then Oracle Database replaces the nth occurrence of the match.

If the occurrence is greater than 1, then the database searches for the second occurrence beginning with the first character following the first occurrence of pattern, and so forth.

regexp_match_parameter: Specifies a text literal that lets you change the default
matching behavior of the function. The behavior of this parameter is the same for
this function as for the REGEXP_REPLACE SQL function. See Oracle Database SQL
Language Reference for detailed information.

To filter the search so that it is not case sensitive, specify the ${\tt RE\ CASE\ INSENSITIVE\ format}.$

15.10.3 Regular Expression-Based Redaction Policies Using Formats

The DBMS_REDACT.ADD_POLICY procedure regexp_pattern and regexp_replace_string parameters both support formats.

- Regular Expression Formats
 - The regular expression formats represent commonly used expressions, such as the replacement of digits within a credit card number.
- Example: Regular Expression Redaction Policy Using Formats

 The DBMS_REDACT.ADD_POLICY procedure can create a regular expression redaction policy that uses formats.

15.10.3.1 Regular Expression Formats

The regular expression formats represent commonly used expressions, such as the replacement of digits within a credit card number.

Table 15-9 describes the formats that you can use with the regexp_pattern parameter in the DBMS REDACT.ADD POLICY procedure.

Table 15-9 Formats for the regexp_pattern Parameter

Format	Description
DBMS_REDACT.RE_PATTERN_ANY_DIGIT	Searches for any digit. Replaces the identified pattern with the characters specified by the regexp_replace_string parameter. The DBMS_REDACT.RE_PATTERN_ANY_DIGIT is commonly used with the following values of the regexp_replace_string parameter:
	<pre>regexp_replace_string => DBMS_REDACT.RE_REDACT_WITH_SINGLE_X</pre>
	This setting replaces any matched digit with the $\ensuremath{\mathtt{X}}$ character.
	The following setting replaces any matched digit with the $\ensuremath{\mathtt{1}}$ character.
	<pre>regexp_replace_string => DBMS_REDACT.RE_REDACT_WITH_SINGLE_1</pre>
DBMS_REDACT.RE_PATTERN_CC_L6_T4	Searches for the middle digits of any credit card (other than American Express) that has 6 leading digits and 4 trailing digits. Replaces the identified pattern with the characters specified by the regexp_replace_string parameter.
	The appropriate <code>regexp_replace_string</code> setting to use with this format is <code>DBMS_REDACT.RE_REDACT_CC_MIDDLE_DIGITS</code> , which finds any credit card that could have 6 leading and 4 trailing digits left as actual data. It then redacts the middle digits.

Table 15-9 (Cont.) Formats for the regexp_pattern Parameter

Format	Description
DBMS_REDACT.RE_PATTERN_CCN	Matches credit card numbers other than American Express credit card numbers. The appropriate regexp_replace_string setting to use with this format is DBMS_REDACT.RE_REDACT_CCN. The end result is a redaction of all the digits except the last 4.
DBMS_REDACT.RE_PATTERN_AMEX_CCN	Matches American Express credit card numbers. The appropriate regexp_replace_string setting to use with this format is DBMS_REDACT_RE_REDACT_AMEX_CCN. The end result is a redaction of all the digits except the last 5.
DBMS_REDACT.RE_PATTERN_US_PHONE	Searches for any U.S. telephone number. Replaces the identified pattern with the characters specified by the regexp_replace_string parameter
	The appropriate <code>regexp_replace_string</code> setting to use with this format is <code>DBMS_REDACT.RE_REDACT_US_PHONE_L7</code> , which finds United States phone numbers and then redacts the last 7 digits.
DBMS_REDACT.RE_PATTERN_EMAIL_ADDRESS	Searches for any email address. Replaces the identified pattern with the characters specified by the regexp_replace_string parameter
	The appropriate regexp_replace_string settings that you can use with this format are as follows:
	RE_REDACT_EMAIL_NAME, which finds any email address and redacts the email user name
	RE_REDACT_EMAIL_DOMAIN, which finds any email address and redacts the email domain
	RE_REDACT_EMAIL_ENTIRE, which finds any email address and redacts the entire email address
DBMS_REDACT.RE_PATTERN_IP_ADDRESS	Searches for an IP address. Replaces the identified pattern with the characters specified by the regexp_replace_string parameter.
	The appropriate <code>regexp_replace_string</code> setting to use with this format is <code>DBMS_REDACT.RE_REDACT_IP_L3</code> , which replaces the last section of the dotted decimal string representation of an IP address with the characters 999 to indicate that it was redacted.

Table 15-10 describes formats that you can use with the <code>regexp_replace_string</code> parameter in the <code>DBMS_REDACT.ADD_POLICY</code> procedure.

Table 15-10 Formats for the regexp_replace_string Parameter

Format	Description
DBMS_REDACT.RE_REDACT_WITH_SINGLE_X	Replaces the data with a single X character for each of the actual data characters. For example, the credit card number 5105 1051 0510 5100 could be replaced with XXXX XXXX XXXX XXXX.
DBMS_REDACT.RE_REDACT_WITH_SINGLE_1	Replaces the data with a single 1 digit for each of the actual data digits. For example, the credit card number 5105 1051 0510 5100 could be replaced with 1111 1111 1111 1111.
DBMS_REDACT.RE_REDACT_CC_MIDDLE_DIGIT S	Redacts the middle digits in credit card numbers, as specified by setting the <code>regexp_pattern</code> parameter with the <code>RE_PATTERN_CC_L6_T4</code> format. The redaction replaces each redacted character with an X. For example, the credit card number <code>5105_1051_0510_510_5100_5100_5100_5100_</code>
DBMS_REDACT.RE_REDACT_CCN	Redacts the first 12 digits of a credit card number other than an American Express card number. For example, 40128888888881881 is redacted to ***********************************
DBMS_REDACT.RE_REDACT_AMEX_CCN	Redacts the first 10 digits of an American Express number. For example, 378282246310005 is redacted to ********10005.
DBMS_REDACT.RE_REDACT_PHONE_L7	Redacts the last 7 digits of U.S. telephone numbers, as specified by setting the <code>regexp_pattern</code> parameter with the <code>RE_PATTERN_US_PHONE</code> format. The redaction replaces each redacted character with an X. This setting only applies to hyphenated phone numbers, not phone numbers with spaces. For example, the telephone number <code>415-555-0100</code> could be replaced with <code>415-XXX-XXXX</code> .
DBMS_REDACT.RE_REDACT_EMAIL_NAME	Redacts the email name as specified by setting the regexp_pattern parameter with the RE_PATTERN_EMAIL_ADDRESS format. The redaction replaces the email user name with four x characters. For example, the email address psmith@example.com could be replaced with xxxx@example.com.
DBMS_REDACT.RE_REDACT_EMAIL_DOMAIN	Redacts the email domain name as specified by setting the <code>regexp_pattern</code> parameter with the <code>RE_PATTERN_EMAIL_ADDRESS</code> format. The redaction replaces the domain with five <code>x</code> characters. For example, the email address <code>psmith@example.com</code> could be replaced with <code>psmith@xxxxx.com</code> .

Table 15-10 (Cont.) Formats for the regexp_replace_string Parameter

Format	Description
DBMS_REDACT.RE_REDACT_IP_L3	Redacts the last three digits of the IP address as specified by setting the regexp_pattern parameter with the RE_PATTERN_IP_ADDRESS format. For example, the IP address 192.0.2.254 could be replaced with 192.0.2.999, which is an invalid IP address.

Related Topics

General Syntax of the DBMS_REDACT.ADD_POLICY Procedure
 To create a Data Redaction policy, you must use the DBMS_REDACT.ADD_POLICY procedure.

15.10.3.2 Example: Regular Expression Redaction Policy Using Formats

The DBMS_REDACT.ADD_POLICY procedure can create a regular expression redaction policy that uses formats.

Example 15-8 shows how to use regular expression formats to redact credit card numbers.

Example 15-8 Regular Expression Data Redaction Character Values

Query and redacted result:

```
SELECT cc_num FROM mavis.cust_info;

CC_NUM
-----
401288XXXXXX1881
411111XXXXXX1111
555555XXXXXXX1111
511111XXXXXXX1118
```


15.10.4 Custom Regular Expression Redaction Policies

You can customize regular expressions in Data Redaction policies.

- Settings for Custom Regular Expressions
 Oracle Data Redaction provides special settings to configure policies that use regular expressions.
- Example: Custom Regular Expression Redaction Policy
 The DBMS_REDACT.ADD_POLICY procedure regexp* parameters can create a custom regular expression redaction policy.

15.10.4.1 Settings for Custom Regular Expressions

Oracle Data Redaction provides special settings to configure policies that use regular expressions.

To create custom regular expression redaction policies, you use the following parameters in the $\texttt{DBMS_REDACT.ADD_POLICY}$ procedure:

- regexp_pattern: This pattern is usually a text literal and can be of any of the data types CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The pattern can contain up to 512 bytes. For further information about writing the regular expression for the regexp_pattern parameter, see the description of the pattern argument of the REGEXP_REPLACE SQL function in Oracle Database SQL Language Reference, because the support that Data Redaction provides for regular expression matching is similar to that of the REGEXP_REPLACE SQL function.
- regexp_replace_string: This data can be of any of the data types CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The regexp_replace_string can contain up to 500 back references to subexpressions in the form \n, where n is a number from 1 to 9. If you want to include a backslash (\) in the regexp_replace_string setting, then you must precede it with the escape character, which is also a backslash. For example, to literally replace the matched pattern with \2 (rather than replace it with the second matched subexpression of the matched pattern), you enter \2 in the regexp_replace_string setting. For more information, see *Oracle Database SQL Language Reference*.

See Also:

General Syntax of the DBMS_REDACT.ADD_POLICY Procedure for information about other DBMS REDACT.ADD POLICY parameters

15.10.4.2 Example: Custom Regular Expression Redaction Policy

The DBMS_REDACT.ADD_POLICY procedure regexp* parameters can create a custom regular expression redaction policy.

Example 15-9 shows how to use regular expressions to redact the <code>emp_id</code> column data. In this example, taken together, the <code>regexp_pattern</code> and <code>regexp_replace_string</code> parameters do the following: first, find the pattern of 9 digits. For reference, break them into three groups

that contain the first 3, the next 2, and then the last 4 digits. Then, replace the first five digits with XXXXX concatenated with the third group (the last 4 digits) as found in the original pattern.

Example 15-9 Partially Redacted Data Redaction Using Regular Expressions

Query and redacted result:

```
SELECT emp_id FROM mavis.cust_info;

EMP_ID
-----
XXXXX1234
XXXXX5678
```

15.11 Creating a Random Redaction Policy

A random redaction policy presents redacted data as randomly generated values, such as Ukjs132[[]]]s for the character data type.

- Syntax for Creating a Random Redaction Policy
 A random redaction policy presents the redacted data to the querying application user as randomly generated values, based on the column data type.
- Example: Random Redaction Policy
 You can use the DBMS_REDACT.ADD_POLICY PL/SQL procedure create a random redaction policy.

15.11.1 Syntax for Creating a Random Redaction Policy

A random redaction policy presents the redacted data to the querying application user as randomly generated values, based on the column data type.

Be aware that LOB columns are not supported.

The DBMS_REDACT.ADD_POLICY fields for creating a random redaction policy are as follows:

In this specification:

- object_schema, object_name, column_name, policy_name, expression, enable: See General Syntax of the DBMS_REDACT.ADD_POLICY Procedure.
- function_type: Specifies the function used to set the type of redaction. Enter DBMS REDACT.RANDOM.

If you omit the function_type parameter, then the default redaction function_type setting is DBMS_REDACT.FULL.

Remember that the data type of the column determines which <code>function_type</code> settings that you are permitted to use. See Comparison of Full, Partial, and Random Redaction Based on Data Types.

15.11.2 Example: Random Redaction Policy

You can use the <code>DBMS_REDACT.ADD_POLICY PL/SQL</code> procedure create a random redaction policy.

Example 15-10 shows how to generate random values. Each time you run the SELECT statement, the output will be different.

Example 15-10 Randomly Redacted Data Redaction Values

```
BEGIN

DBMS_REDACT.ADD_POLICY(
   object_schema => 'mavis',
   object_name => 'cust_info',
   column_name => 'login_username',
   policy_name => 'redact_cust_rand_username',
   function_type => DBMS_REDACT.RANDOM,
   expression => 'SYS_CONTEXT(''USERENV'',''SESSION_USER'') = ''APP_USER''');
END;
//
```

Query and redacted result:

```
SELECT login_username FROM mavis.cust_info;

LOGIN_USERNAME
-----
N[CG{\pTVcK
PL{opergHKV
```

15.12 Creating a Policy That Uses No Redaction

You can create policies that use no redaction at all, for when you want to test the policy in a development environment.

Syntax for Creating a Policy with No Redaction
 The None redaction type option can be used to test the internal operation of redaction policies.

Example: Performing No Redaction

The DBMS REDACT.ADD POLICY procedure can create a policy that performs no redaction.

15.12.1 Syntax for Creating a Policy with No Redaction

The None redaction type option can be used to test the internal operation of redaction policies.

The None redaction type has no effect on the guery results against tables that have policies defined on them. You can use this option to test the redaction policy definitions before applying them to a production environment. Be aware that LOB columns are not supported.

The DBMS REDACT. ADD POLICY fields for creating a policy with no redaction are as follows:

In this specification:

- object schema, object name, column name, policy name, expression, enable: See General Syntax of the DBMS_REDACT.ADD_POLICY Procedure.
- function type: Specifies the function used to set the type of data redaction. Enter DBMS REDACT.NONE.

If you omit the function type parameter, then the default redaction function type setting is DBMS REDACT.FULL.

15.12.2 Example: Performing No Redaction

The DBMS REDACT.ADD POLICY procedure can create a policy that performs no redaction.

Example 15-11 shows how to create a Data Redaction policy that does not redact any of the displayed values.

Example 15-11 No Redacted Data Redaction Values

```
DBMS REDACT.ADD POLICY(
       object_schema => 'mavis',
object_name => 'cust_info',
column_name => 'user_name',
policy_name => 'redact_cust_no_vals',
function_type => DBMS_REDACT.NONE,
expression => '1=1');
END;
```

Query and redacted result:

```
SELECT user_name FROM mavis.cust_info;

USER_NAME
-----
IDA NEAU
```

15.13 Exemption of Users from Oracle Data Redaction Policies

You can exempt users from having Oracle Data Redaction policies applied to the data they access.

To do so, you should grant the users the EXEMPT REDACTION POLICY system or schema privilege. Grant this privilege to trusted users only.

In addition to users who were granted this privilege, user SYS is also exempt from all Data Redaction policies. The person who creates the Data Redaction policy is by default not exempt from it, unless this person is user SYS or has the EXEMPT REDACTION POLICY system or schema privilege.

Note the following:

- Users who have the INSERT privilege on a table can insert values into a redacted column, regardless of whether a Data Redaction policy exists on the table. Data Redaction only affects SQL SELECT statements (that is, queries) issued by a user, and has no effect on any other SQL issued by a user, including INSERT, UPDATE, MERGE, or DELETE statements. (See the next bullet for exceptions to this rule.)
- Users cannot perform a CREATE TABLE AS SELECT where any of the columns being selected (source columns) is protected by a Data Redaction policy (and similarly, any DML operation where the source column is a redacted column), unless the user was granted the EXEMPT REDACTION POLICY system or schema privilege.
- The EXEMPT REDACTION POLICY system or schema privilege is included in the DBA role, but this privilege must be granted explicitly to users because it is not included in the WITH ADMIN OPTION for DBA role grants. Users who were granted the DBA role are exempt from redaction policies because the DBA role contains the EXP_FULL_DATABASE role, which is granted the EXEMPT REDACTION POLICY system or schema privilege.
- The EXEMPT REDACTION POLICY system or schema privilege, when granted to a user or role on a schema, enables the grantee to bypass any existing Oracle Data Redaction policies. This user will be able to view the actual data from tables or views on which Data Redaction policies are defined in the schema.

Related Topics

- Restriction of Administrative Access to Oracle Data Redaction Policies
 You can restrict the list of users who can create, view, and edit Data Redaction policies.
- Oracle Data Pump Security Model for Oracle Data Redaction
 The DATAPUMP_EXP_FULL_DATABASE role includes the powerful EXEMPT REDACTION POLICY system privilege.

15.14 Altering an Oracle Data Redaction Policy

The <code>DBMS_REDACT.ALTER_POLICY</code> procedure enables you to modify Oracle Data Redaction policies.

- About Altering Oracle Data Redaction Policies
 The DBMS REDACT.ALTER POLICY procedure alters a Data Redaction policy.
- Syntax for the DBMS_REDACT.ALTER_POLICY Procedure
 The DBMS_REDACT.ALTER_POLICY procedure syntax can be used to alter all types of Data Redaction policies.
- Parameters Required for DBMS_REDACT.ALTER_POLICY Actions
 The DBMS_REDACT.ALTER_POLICY procedure provides parameters than can perform various actions, such as adding or modifying a column.
- Tutorial: Altering an Oracle Data Redaction Policy
 You can redact multiple columns in a table or view, with each column having its
 own redaction setting.

15.14.1 About Altering Oracle Data Redaction Policies

The DBMS REDACT.ALTER POLICY procedure alters a Data Redaction policy.

If the policy is already enabled, then you do not need to disable it first, and after you alter the policy, it remains enabled.

You can find the names of existing Data Redaction policies by querying the POLICY_NAME column of the REDACTION_POLICIES data dictionary view, and information about the columns, functions, and parameters specified in a policy by querying the REDACTION_COLUMNS view. To find the current value for policies that use full data redaction, you can query the REDACTION_VALUES_FOR_TYPE_FULL data dictionary view.

The action parameter specifies the type of modification that you want to perform. At a minimum, you must include the <code>object_name</code> and <code>policy_name</code> parameters when you run this procedure.

Related Topics

REDACTION_COLUMNS Data Dictionary View Behavior When a View Is Invalid
When an Oracle Data Redaction policy exists on a column of a view, and the view
becomes invalid, the Data Redaction policy remains visible in the
REDACTION COLUMNS data dictionary view.

15.14.2 Syntax for the DBMS REDACT.ALTER POLICY Procedure

The DBMS_REDACT.ALTER_POLICY procedure syntax can be used to alter all types of Data Redaction policies.

The syntax for the DBMS REDACT.ALTER POLICY procedure is as follows:


```
regexp_match_parameter IN VARCHAR2 := NULL,
policy_description IN VARCHAR2 := NULL,
column_description IN VARCHAR2 := NULL);
```

In this specification:

- action: Enter one of the following values to define the kind of action to use:
 - DBMS_REDACT.MODIFY_COLUMN if you plan to change function_parameters or the redaction type in function type.
 - DBMS_REDACT.ADD_COLUMN if you plan to add a new column (in addition to columns
 that are already protected by the policy) for redaction. This setting is the default for
 the action parameter.
 - DBMS REDACT.DROP COLUMN if you want to remove redaction from a column.
 - DBMS_REDACT.MODIFY_EXPRESSION if you plan to change the expression value. Each
 policy can have only one policy expression. In other words, when you modify the
 policy expression, you are replacing the existing policy expression with a new policy
 expression.
 - DBMS_REDACT.SET_POLICY_DESCRIPTION if you want to change the description of the policy.
 - DBMS_REDACT.SET_COLUMN_DESCRIPTION if you want to change the description of the column.

Related Topics

- Parameters Required for DBMS_REDACT.ALTER_POLICY Actions
 The DBMS_REDACT.ALTER_POLICY procedure provides parameters than can perform various actions, such as adding or modifying a column.
- General Syntax of the DBMS_REDACT.ADD_POLICY Procedure
 To create a Data Redaction policy, you must use the DBMS_REDACT.ADD_POLICY procedure.

15.14.3 Parameters Required for DBMS_REDACT.ALTER_POLICY Actions

The DBMS_REDACT.ALTER_POLICY procedure provides parameters than can perform various actions, such as adding or modifying a column.

Table 15-11 shows the combinations of these parameters.

Table 15-11 Parameters Required for Various DBMS_REDACT.ALTER_POLICY Actions

Desired Alteration	Parameters to Set
Add a column	action (DBMS_REDACT.ADD_COLUMN, optional, default is DBMS REDACT.ADD COLUMN)
	• column_name (required)
	 function_type (optional, default is DBMS_REDACT.FULL)
	 function_parameters (only when function_type is DBMS_REDACT.PARTIAL)
	 regexp* (only when function_type is DBMS REDACT.REGEXP or DBMS REDACT.REGEXP WIDTH)
	• policy description (optional)
	• column_description (optional)
Modify a column	• action (DBMS REDACT.MODIFY COLUMN, required)
	• column name (required)
	• function type (optional, default is DBMS REDACT.FULL)
	 function_parameters (only when function_type is DBMS REDACT.PARTIAL)
	 regexp* (only when function_type is DBMS_REDACT.REGEXP or DBMS_REDACT.REGEXP_WIDTH)
	 policy_description (optional)
	• column_description (optional)
Drop a column	• action (DBMS_REDACT.DROP_COLUMN, required)
	• column_name (required)
expression	• action (DBMS REDACT.MODIFY EXPRESSION, required)
	• expression (required)
	• policy description (optional)
Change the description of the policy	 action (DBMS_REDACT.SET_POLICY_DESCRIPTION, required)
Change the description of the column	 action (DBMS_REDACT.SET_COLUMN_DESCRIPTION, required)
	• column description (required)
	• column name (required)

15.14.4 Tutorial: Altering an Oracle Data Redaction Policy

You can redact multiple columns in a table or view, with each column having its own redaction setting.

The exercise in this section shows how to modify a Data Redaction policy so that multiple columns are redacted. It also shows how to change the <code>expression</code> setting for the policy. To accomplish this, you must run the <code>DBMS_REDACT.ALTER_POLICY</code> procedure in stages.

- 1. Connect to the PDB as a user who has privileges to create users and grant them privileges.
- 2. Create the following users:

```
GRANT CREATE SESSION TO dr_admin IDENTIFIED BY password;
GRANT CREATE SESSION TO sales_rep IDENTIFIED BY password;
GRANT CREATE SESSION TO support rep IDENTIFIED BY password;
```

3. Grant EXECUTE on the DBMS REDACT PL/SQL package to user dr admin.

```
GRANT EXECUTE ON DBMS REDACT TO dr admin;
```

4. Grant the ADMINISTER REDACTION POLICY system privilege to user dr admin.

```
GRANT ADMINISTER REDACTION POLICY TO dr admin;
```

- 5. Connect as user OE.
- 6. Create and populate a table that contains customer credit card information.

```
CREATE TABLE cust_order_info(
    first_name varchar2(20),
    last_name varchar2(30),
    address varchar2(30),
    city varchar2(30),
    state varchar2(3),
    zip varchar2(5),
    cc_num varchar(19),
    cc_exp varchar2(7));

INSERT INTO cust_order_info VALUES ('Jane','Dough','39 Mockingbird Lane', 'San Francisco', 'CA', 94114, '5105 1051 0510 5100', '10/2018');
INSERT INTO cust_order_info VALUES ('Mary','Hightower','2319 Maple Street', 'Sonoma', 'CA', 95476, '5111 1111 1111 1118', '03/2019');
INSERT INTO cust_order_info VALUES ('Herbert','Donahue','292 Winsome Way', 'San Francisco', 'CA', 94117, '5454 5454 5454 5454', '08/2018');
```

7. Grant the SELECT privilege on the cust_order_info table to the sales_rep and support rep users.

```
GRANT SELECT ON cust order info TO sales rep, support rep;
```

- 8. Connect as user dr admin.
- 9. Create and enable policy to redact the credit card number.

10. Modify the policy to include redaction of the expiration date.

```
BEGIN DBMS_REDACT.ALTER_POLICY(
    object_schema => 'oe',
```

11. Modify the policy again, to use a condition so that the sales_rep user views the redacted values and the support rep user views the actual data.

12. To test the policy, have the two users query the cust order info table.

First, connect as support rep and query the table.

User <code>support_rep</code> can view the actual data. Next, connect as <code>sales_rep</code> and query the table.

The actual data is redacted for user sales rep.

13. As user dr_admin, alter the cust_order_info to include a condition so that only support_rep sees the redacted data but sales_rep sees the actual data.

14. Have the users test the policy again.

First, support rep tests the policy:

User support_rep can no longer view the actual data; it is now redacted.

Next, connect as sales rep and query the table.

User sales rep now can view the actual data.

15. If you do not need the components of this tutorial, then you can remove them.

Connect as dr admin and then drop the policy.

```
BEGIN
  DBMS_REDACT.DROP_POLICY (
    object_schema => 'oe',
    object_name => 'cust_order_info',
    policy_name => 'redact_cust_cc_info');
END;
//
```

Connect as a security administrator and drop the users.

```
DROP USER dr_admin;
DROP USER sales_rep;
DROP USER support rep;
```

Connect as user OE and drop the cust order info table.

```
DROP TABLE cust order info;
```

15.15 Redacting Multiple Columns

You can redact more than one column in a Data Redaction policy.

- Adding Columns to a Data Redaction Policy for a Single Table or View
 You can redact columns of different data types, using different redaction types, for one
 table or view.
- Example: Redacting Multiple Columns
 The DBMS REDACT.ALTER POLICY procedure can redact multiple columns.

15.15.1 Adding Columns to a Data Redaction Policy for a Single Table or View

You can redact columns of different data types, using different redaction types, for one table or view.

- Connect to the PDB as a user who has the EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY system or schema privilege.
- 2. Create the policy for the first column that you want to redact.
- 3. Use the DBMS_REDACT.ALTER_POLICY procedure to add the next column to the policy.

As necessary, set the action, column_name, function_type, and function_parameters (or the parameters that begin with regexp_) parameters to define the redaction for the new column, but do not change the object_schema, object_name, policy_name, or expression parameters. Each redacted column continues to have the same redaction parameters that were used to create it.

15.15.2 Example: Redacting Multiple Columns

The DBMS REDACT.ALTER POLICY procedure can redact multiple columns.

Example 15-12 shows how to add a column to an existing Data Redaction policy. In this example, the action parameter specifies that a new column must be added, using DBMS_REDACT.ADD_COLUMN. The name of the new column, card_num, is set by the column name parameter.

Example 15-12 Adding a Column to a Data Redaction Policy

15.16 Disabling and Enabling an Oracle Data Redaction Policy

You can disable and then reenable Oracle Data Redactions policies as necessary.

Disabling an Oracle Data Redaction Policy
 The DBMS_REDACT.DISABLE_POLICY procedure disables Oracle Data Redaction policies.

• Enabling an Oracle Data Redaction Policy
The DBMS REDACT.ENABLE POLICY procedure enables Oracle Data Redaction policies.

15.16.1 Disabling an Oracle Data Redaction Policy

The DBMS REDACT.DISABLE POLICY procedure disables Oracle Data Redaction policies.

You can find the names of existing Data Redaction policies and whether they are enabled by querying the POLICY_NAME and ENABLE columns of the REDACTION_POLICIES view. However, as long as the policy still exists, you cannot create another policy for that table or view, even if the original policy is disabled. In other words, if you want to create a different policy on the same table column, then you must drop the first policy before you can create and use the new policy.

- 1. Connect to the PDB as a user who has the EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY system or schema privilege.
- 2. Run the DBMS REDACT. DISABLE POLICY procedure, using the following syntax:

In this specification:

- object_schema: Specifies the schema of the object on which the Data Redaction
 policy will be applied. If you omit this setting (or enter NULL), then Oracle Database
 uses the name of the current schema.
- object_name: Specifies the name of the table or view to be used for the Data Redaction policy.
- policy name: Specifies the name of the policy to be disabled.

For example:

```
BEGIN
   DBMS_REDACT.DISABLE_POLICY (
    object_schema => 'mavis',
    object_name => 'cust_info',
    policy_name => 'redact_cust_user_ids');
END;
/
```

15.16.2 Enabling an Oracle Data Redaction Policy

The DBMS REDACT. ENABLE POLICY procedure enables Oracle Data Redaction policies.

Immediately after you create a new policy, you do not need to enable it; the creation process handles that for you. To find the names of existing Data Redaction policies and whether they are enabled, you can query the <code>POLICY_NAME</code> and <code>ENABLE</code> columns of the <code>REDACTION_POLICIES</code> view. After you run the procedure to enable the policy, the enablement takes effect immediately.

- 1. Connect to the PDB as a user who has the EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY system or schema privilege.
- 2. Run the DBMS REDACT. ENABLE POLICY procedure, using the following syntax.

In this specification:

- object_schema: Specifies the schema of the object on which the Data Redaction policy will be applied. If you omit this setting (or enter NULL), then Oracle Database uses the name of the current schema.
- object_name: Specifies the name of the table or view to be used for the Data Redaction policy.
- policy name: Specifies the name of the policy to be enabled.

For example:

```
BEGIN

DBMS_REDACT.ENABLE_POLICY (
   object_schema => 'mavis',
   object_name => 'cust_info',
   policy_name => 'redact_cust_user_ids');
END;
//
```

15.17 Dropping an Oracle Data Redaction Policy

The DBMS REDACT. DROP POLICY procedure drops Oracle Data Redaction policies.

You can drop an Oracle Data Redaction policy whether it is enabled or disabled. You can find the names of existing Data Redaction policies, by querying the POLICY_NAME column of the REDACTION_POLICIES view. When you drop a table or view that is associated with an Oracle Data Redaction policy, the policy is automatically dropped. As a best practice, drop the policy first, and then drop the table or view afterward.

- Connect to the PDB as a user who has the EXECUTE privilege on the DBMS_REDACT PL/SQL package.
- 2. Run the DBMS REDACT. DROP POLICY procedure.

Use the following syntax:

In this specification:

- object_schema: Specifies the schema of the object to which the Data
 Redaction policy applies. If you omit this setting (or enter NULL), then Oracle
 Database uses the name of the current schema.
- object_name: Specifies the name of the table or view to be used for the Data Redaction policy.
- policy name: Specifies the name of the policy to be dropped.

For example:


```
BEGIN

DBMS_REDACT.DROP_POLICY (
   object_schema => 'mavis',
   object_name => 'cust_info',
   policy_name => 'redact_cust_user_ids');
END;
//
```

After you run the DBMS REDACT.DROP POLICY procedure, the drop takes effect immediately.

Related Topics

 Dropped Oracle Data Redaction Policies When the Recycle Bin Is Enabled You should check if the recycle bin is enabled before you drop Oracle Data Redaction policies.

15.18 Tutorial: SQL Expressions to Build Reports with Redacted Values

SQL expressions can be used to build reports based on columns that have Oracle Data Redaction policies defined on them.

The values used in the SQL expression will be redacted. This redaction occurs in such a way that the redaction takes place before the SQL expression is evaluated: the result value that is displayed in the report is the end result of the evaluated SQL expression over the redacted values, rather than the redacted result of the SQL expression as a whole.

- 1. Connect to the PDB as a user who has the EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY system or schema privilege.
- 2. Create the following Data Redaction policy for the HR.EMPLOYEES table.

This policy will replace the first 4 digits of the value from the SALARY column with the number 9 and the first digit of the value from the COMMISSION PCT column with a 9.

3. Connect as the ${\tt HR}$ user and then run the following report.

This report will use the SQL expression ($SALARY + COMMISSION_PCT$) to combine the employees' salaries and commissions.

4. Use SQL expressions for the report, including concatenation.

For example:

```
SELECT 'Employee ID ' || EMPLOYEE_ID ||
    ' has a salary of ' || SALARY ||
    ' and a commission of ' || COMMISSION_PCT || '.'

detailed_emp_compensation
FROM HR.EMPLOYEES
WHERE DEPARTMENT_ID = 80
ORDER BY EMPLOYEE_ID;

DETAILED_EMP_COMPENSATION

Employee ID 150 has a salary of 99990 and a commission of .9.
Employee ID 151 has a salary of 9999 and a commission of .95.
Employee ID 152 has a salary of 9999 and a commission of .95.
```

- 5. Connect the user who created the redact_emp_sal_comm Data Redaction policy.
- 6. Run the following statement to drop the policy.

```
BEGIN
  DBMS_REDACT.DROP_POLICY (
   object_schema => 'HR',
   object_name => 'EMPLOYEES',
   policy_name => 'redact_emp_sal_comm');
END;
//
```

15.19 Using Trace Files to Troubleshoot Oracle Data Redaction Policies

Trace files for Oracle Data Redaction can be generated at either the system level or the session level.

You must set the tracing to high. The is no low level tracing for Oracle Data Redaction.

- Connect to the PDB as a user who has the ALTER SYSTEM or ALTER SESSION privilege.
- Enable tracing.

At the system level, for all sessions:

```
ALTER SYSTEM SET events 'TRACE[RADM] disk=high';
```

At the session level, for the current session:

```
ALTER SESSION SET events 'TRACE[RADM] disk=high';
```

To find problems with queries involving redacted columns, include /* KZDMPRQB_DUMP */ in the query. For example:

```
SELECT /* KZDMPRQB_DUMP */ redacted_column FROM
table with redaction policy;
```

Search for KCCF2MASK and KCCF2MASKDEP in the dump. The subsequent part of the dump files gives Oracle Redaction-specific insights.

- 3. To disable tracing:
 - At the system level, for all sessions:

```
ALTER SYSTEM SET EVENTS 'TRACE[RADM] OFF';
```

At the session level, for the current session:

ALTER SESSION SET EVENTS 'TRACE[RADM] OFF';

15.20 Oracle Data Redaction Policy Data Dictionary Views

Oracle Database provides data dictionary views that list information about Data Redaction policies.

Before you can query these views, you must be granted the SELECT CATALOG ROLE role.

Table 15-12 lists the Data Redaction data dictionary views.

Table 15-12 Data Redaction Views

View	Description
REDACTION_COLUMNS	Describes all of the redacted columns in the database, providing the owner of the table or view within which the column resides, the object name, the column name, the type of redaction function, the parameters to the redaction function (if any), and a description of the redaction function that is performed on the column.
REDACTION_EXPRESSIONS	Displays the names of existing policy expressions, their SQL expressions, owner of the table or view that this named policy expression is associated with, name of the table or view which this named policy expression is associated with, name of the column that this named policy expression is associated with, and description of the named policy expression.

Table 15-12 (Cont.) Data Redaction Views

View	Description
REDACTION_POLICIES	Describes all of the data redaction policies in the database. It includes information about the object owner, object name, policy name, policy expression, whether the policy is enabled, and a description of the Data Redaction policy.
REDACTION_VALUES_FOR_TYPE_FUL L	Shows the current redaction values for Data Redaction policies that use full redaction

Managing Oracle Data Redaction Policies in Oracle Enterprise Manager

Oracle Enterprise Manager Cloud Control (Cloud Control) can manage Oracle Data Redaction policies and formats.

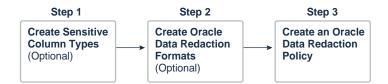
- About Using Oracle Data Redaction in Oracle Enterprise Manager
 Oracle Enterprise Manager Cloud Control provides an unified user interface for creating and managing Oracle Data Redaction policies.
- Oracle Data Redaction Workflow
 First, you should create sensitive column types and formats if necessary, and then create the Oracle Data Redaction policy afterward.
- Management of Sensitive Column Types in Enterprise Manager
 A sensitive column type categorizes table column sensitive information into a sensitive information type, such as credit card numbers.
- Managing Oracle Data Redaction Formats Using Enterprise Manager
 Oracle Data Redaction provides redaction formats to be used directly within a redaction policy to redact data.
- Managing Oracle Data Redaction Policies Using Enterprise Manager
 You can create, edit, view, and delete Oracle Data Redaction policies in Enterprise
 Manager Cloud Control.
- Managing Named Data Redaction Policy Expressions Using Enterprise Manager
 You can manage Oracle Data Redaction policy expressions in Enterprise Manager Cloud
 Control.

16.1 About Using Oracle Data Redaction in Oracle Enterprise Manager

Oracle Enterprise Manager Cloud Control provides an unified user interface for creating and managing Oracle Data Redaction policies.

You can do the following:

- Create and manage custom Oracle Data Redaction formats, which were previously known as Data Redaction shortcuts. (This functionality is not available from the command line.)
- Create and manage sensitive column types directly from the Oracle Data Redaction pages. While you create a Data Redaction policy, Cloud Control uses sensitive column types to obtain the Oracle Data Redaction formats that are relevant to the column that you are redacting.



Ensure that you have the latest plug-in for Oracle Enterprise Manager. If you have the Oracle Database plug-in release 13.1.1.0.0, then you can create named Data Redaction policy expressions in Oracle Enterprise Manager.

16.2 Oracle Data Redaction Workflow

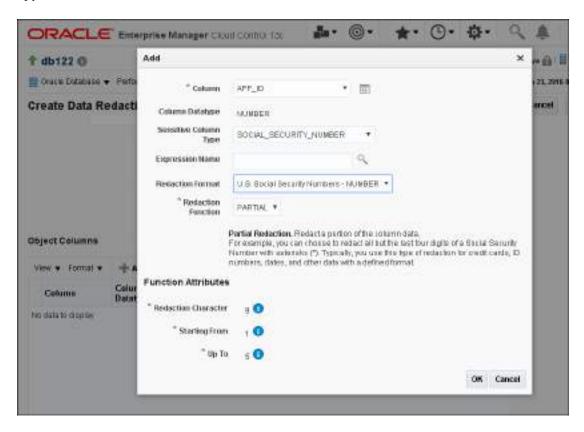
First, you should create sensitive column types and formats if necessary, and then create the Oracle Data Redaction policy afterward.

The following figure illustrates this process:

- (Optional) If you want to map the database columns (that contain the data that you
 want to redact) to new sensitive column types, then create the required sensitive
 column types as described in Management of Sensitive Column Types in
 Enterprise Manager.
- (Optional) If you want to redact the data (present in a particular database column)
 using a custom redaction format, then create the required redaction format as
 described in Creating a Custom Oracle Data Redaction Format Using Enterprise
 Manager.
- 3. Create an Oracle Data Redaction policy for the required database, as described in Creating an Oracle Data Redaction Policy Using Enterprise Manager.

When you create an Oracle Data Redaction policy, it is enabled by default. For information on how to disable an enabled redaction policy, see Enabling or Disabling an Oracle Data Redaction Policy in Enterprise Manager.

16.3 Management of Sensitive Column Types in Enterprise Manager


A sensitive column type categorizes table column sensitive information into a sensitive information type, such as credit card numbers.

Sensitive column types use a combination of the column name, column comments, and the data pattern defined using a regular expression to tag a column to a particular sensitive information type.

While you create Oracle Data Redaction policies, redaction formats are filtered on the basis of the chosen sensitive column type, thus saving time and effort. For example, if the database table column that you want to redact contains U.S. Social Security numbers, and you select the SOCIAL_SECURITY_NUMBER sensitive column type for the column while adding it to the Oracle Data Redaction policy, the default redaction formats that you can use to redact the column data are filtered, and only the relevant redaction formats are displayed.

Figure 16-1 illustrates the filtering of Oracle Data Redaction formats based on sensitive column types.

Figure 16-1 Oracle Data Redaction Formats Filtered on the Basis of Sensitive Column Types

Note:

This functionality is available only if you have the Enterprise Manager for Oracle Database plug-in 12.1.0.7 or later deployed in your system.

As part of the Application Data Modeling feature, Oracle provides a number of default sensitive column types that a database column can be mapped to.

Figure 16-2 displays some of the default sensitive column types. To access this page, click **Manage Sensitive Column Types** on the Data Redaction Formats page.

Application Data Modeling 😑 🕶 rigoritation Data Madeling > Sensitive Column Types Sensitive Column Types Description → CREDIT_CARD_NAMBER Identifies credit card number columns. Samples: \$109-1234-1234-123... Oracle EMML_ID Identifies entail address rolumes. Samples jumith@compréson, les ■P_ADORESS identifies IP address columns, Samples: 1.7.7.1.78.78.78.12, 788.789... SERN_10 Identifica (10 digit international Standard Book Number tolumes, Samje,, * ISBN_13 Identifies 13 digit International Standard Book Number Johanns, Samp. NATIONAL_INSURUNCE_HUMBER Islantifies National Insurance number (JH) solutions Samples: 22:50 1.... PHONE_NUMBER Identifies phone number columns: Bamples: 555-1212; (173)555-121... ■ SOCIAL_NSLIRANCE_NUMBER Identifico Scota: Insuranza Number (Canada) i piumna. Samptos: 984... ■SOCIAL_BECURITY_NUMBER Identifies Social Security number columns. Symples: 133.45-6789, 12... JUNOF NEO Densitive column type not defined. TUNIVERSAL_PRODUCT_CODE Identifies Universal Product Code columns. Samples: 1-23459-78901-... Gracie

Figure 16-2 Default Sensitive Column Types

If none of the default sensitive column types are suitable for the database column that contains the data that you want to redact, you can create a new sensitive column type, or create a sensitive column type that is based on an existing sensitive column type.

16.4 Managing Oracle Data Redaction Formats Using Enterprise Manager

Oracle Data Redaction provides redaction formats to be used directly within a redaction policy to redact data.

- About Managing Oracle Data Redaction Formats Using Enterprise Manager
 The Oracle Data Redaction formats are used for commonly redacted data, such as ID numbers, credit cards, or phone numbers.
- Creating a Custom Oracle Data Redaction Format Using Enterprise Manager
 You can create and save custom Oracle Data Redaction formats using Enterprise
 Manager Cloud Control.
- Editing a Custom Oracle Data Redaction Format Using Enterprise Manager You can edit custom Oracle Data Redaction formats using Enterprise Manager Cloud Control, but not in SQL*Plus.
- Viewing Oracle Data Redaction Formats Using Enterprise Manager
 Enterprise Manager Cloud Control displays the details of the Oracle-supplied and custom Oracle Data Redaction formats.
- Deleting a Custom Oracle Data Redaction Format Using Enterprise Manager You can delete custom Oracle Data Redaction formats using Enterprise Manager Cloud Control.


16.4.1 About Managing Oracle Data Redaction Formats Using Enterprise Manager

The Oracle Data Redaction formats are used for commonly redacted data, such as ID numbers, credit cards, or phone numbers.

You can use several default Oracle Data Redaction formats (previously known as Oracle Data Redaction templates). As an example of the Oracle Data Redaction formats, a set of Social Security number formats enable you to quickly designate ways to redact Social Security numbers, such as redacting the first five numbers of the Social Security number.

Figure 16-3 displays the default Oracle Data Redaction formats.

Figure 16-3 Default Oracle Data Redaction Formats

Each default Oracle Data Redaction format consists of a specific redaction function that determines the redacted output when the redaction format is used in an Oracle Data Redaction policy. For example, the Credit Card Numbers - NUMBER default redaction format replaces the first twelve digits of the column data with the digit 0, when it is used in an Oracle Data Redaction policy. That is, if the column data is 555555555555554444, the redacted output will be 000000000000004444.

If you have deployed the Enterprise Manager for Oracle Database plug-in 12.1.0.7 or higher on your system, then you can also create and save custom redaction formats, which you can then use in your redaction policies.

16.4.2 Creating a Custom Oracle Data Redaction Format Using Enterprise Manager

You can create and save custom Oracle Data Redaction formats using Enterprise Manager Cloud Control.

Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.
 The URL is as follows:

https://host:port/em

- 2. From the Targets menu, select Databases.
- 3. Select **Search List**, then click the name of a database target.
- On the home page of the database target, from the Security menu, select Data Redaction.
- 5. If you are prompted to do so, then log in to the database as a user who has the EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY system or schema privilege.
- 6. Select the Formats tab.
- 7. Do one of the following:
 - To create a new redaction format, click Create.
 - To create a redaction format that is based on a default format, select the format and then click **Create Like**.

If you select **Create**, then the following dialog box appears:

8. Provide a name and a description for the redaction format that you want to create.

If you want to map the redaction format to a particular sensitive column type (such that the created redaction format can be used to redact the data of a column that is associated with the sensitive column type), then select a value for **Sensitive Column Type**.

Select the function that the format should use to redact the column data. For **Redaction Function**, select as follows:

- FULL if the format should redact the entire column data.
- PARTIAL if the format should redact only a part of the column data. Ensure that you
 provide the function attributes, as well as the data type that you want to use the
 redaction format for.
- **REGEX** if the format should redact data based on a regular expression. Ensure that you provide the function attributes.
- RANDOM if the format should redact data in a random manner, using randomly generated values
- **NONE** if the format will be used to only test the definition of a redaction policy, and not redact any column data

The Nullify redaction type is not supported in Oracle Enterprise Manager.

9. Click **OK** to create and save the custom redaction format.

This format now can be used to create a redaction policy.

Related Topics

- Oracle Data Redaction Features and Capabilities
 Oracle Data Redaction provides a variety of ways to redact different types of data.
- Creating an Oracle Data Redaction Policy Using Enterprise Manager
 You can create an Oracle Data Redaction policy using Enterprise Manager Cloud
 Control.

16.4.3 Editing a Custom Oracle Data Redaction Format Using Enterprise Manager

You can edit custom Oracle Data Redaction formats using Enterprise Manager Cloud Control, but not in SQL*Plus.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.


The URL is as follows:

https://host:port/em

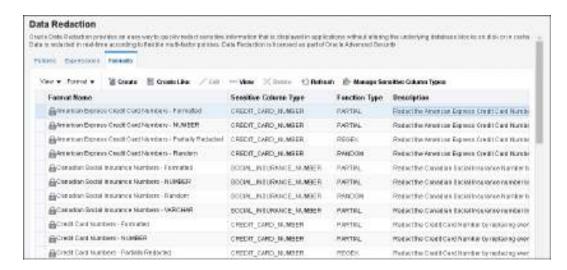
- 2. From the **Targets** menu, select **Databases**.
- 3. Select **Search List**, then click the name of a database target.
- On the home page of the database target, from the Security menu, select Data Redaction.

- 5. If you are prompted to do so, then log in to the database as a user who has the EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY system or schema privilege.
- 6. Select the Formats tab.
- 7. Select the custom redaction format that you want to edit, then click Edit. A dialog box similar to the following appears:

- **8.** (Optional) Choose to edit the format description, sensitive column type, redaction function, and the redaction function attributes.
- Click OK to save the edited format.

16.4.4 Viewing Oracle Data Redaction Formats Using Enterprise Manager

Enterprise Manager Cloud Control displays the details of the Oracle-supplied and custom Oracle Data Redaction formats.


 Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

The URL is as follows:

https://host:port/em

- 2. Search List
- 3. From the **Targets** menu, select **Databases**.
- 4. Select, then click the name of a database target.
- On the home page of the database target, from the Security menu, select Data Redaction.
- 6. Log in to the database as a user who has privileges to view information in Oracle Data Redaction data dictionary views.
- 7. Select the Formats tab.

The Data Redaction Formats page appears, similar to the following page.

8. Select the required redaction format, then click View.

16.4.5 Deleting a Custom Oracle Data Redaction Format Using Enterprise Manager

You can delete custom Oracle Data Redaction formats using Enterprise Manager Cloud Control.

You can only delete custom Oracle Data Redaction formats, and not the redaction formats that are provided by Oracle.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

The URL is as follows:

- From the Targets menu, select Databases.
- 3. Select **Search List**, then click the name of a database target.
- 4. On the home page of the database target, from the **Security** menu, select **Data Redaction**.
- 5. If you are prompted to do so, then log in to the database as a user who has the EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY system or schema privilege.
- 6. Select the Formats tab.
- Select the custom redaction format that you want to delete, and then click Delete.
- 8. In the Confirmation dialog box, click **Yes** or **No**.

16.5 Managing Oracle Data Redaction Policies Using Enterprise Manager

You can create, edit, view, and delete Oracle Data Redaction policies in Enterprise Manager Cloud Control.

- About Managing Oracle Data Redaction Policies Using Enterprise Manager
 Use the Data Redaction page in Cloud Control to manage Oracle Data Redaction
 policies.
- Creating an Oracle Data Redaction Policy Using Enterprise Manager
 You can create an Oracle Data Redaction policy using Enterprise Manager Cloud
 Control.
- Editing an Oracle Data Redaction Policy Using Enterprise Manager
 You can edit an Oracle Data Redaction policy using Enterprise Manager Cloud Control.
- Viewing Oracle Data Redaction Policy Details Using Enterprise Manager
 You can find Oracle Data Redaction policy details such as whether the policy is
 enabled by using Enterprise Manager Cloud Control.
- Enabling or Disabling an Oracle Data Redaction Policy in Enterprise Manager
 An Oracle Data Redaction policy is executed at run time only if it is enabled. When
 you create an Oracle Data Redaction policy, it is enabled by default.
- Deleting an Oracle Data Redaction Policy Using Enterprise Manager
 You can delete an Oracle Data Redaction policy using Enterprise Manager Cloud
 Control.

16.5.1 About Managing Oracle Data Redaction Policies Using Enterprise Manager

Use the Data Redaction page in Cloud Control to manage Oracle Data Redaction policies.

To redact the data present in a particular database table or view column, you must create an Oracle Data Redaction policy. Data is redacted using a redaction format that is specified by the Oracle Data Redaction policy. To redact data, you can use any of the Oracle-supplied redaction formats, or create and use a custom redaction format. If the table or view column that contains the data that you want to redact is mapped to a sensitive column type, Oracle uses the mapping to recommend suitable redaction formats for the data. Thus, Oracle Data Redaction policies encapsulate database schemas, database table and view columns, sensitive column types, and Oracle Data Redaction formats.

Figure 16-4 shows the Data Redaction page, which enables you to create and manage Oracle Data Redaction policies in Cloud Control.

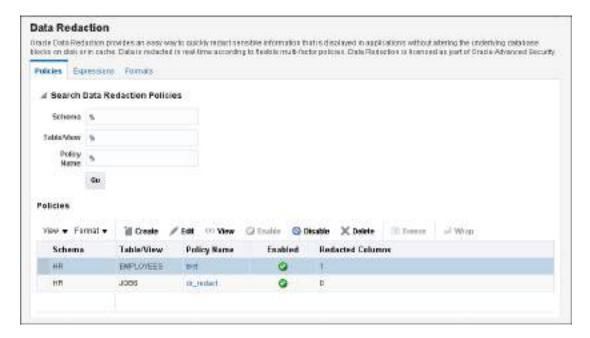


Figure 16-4 Oracle Data Redaction Policies Page

16.5.2 Creating an Oracle Data Redaction Policy Using Enterprise Manager

You can create an Oracle Data Redaction policy using Enterprise Manager Cloud Control.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

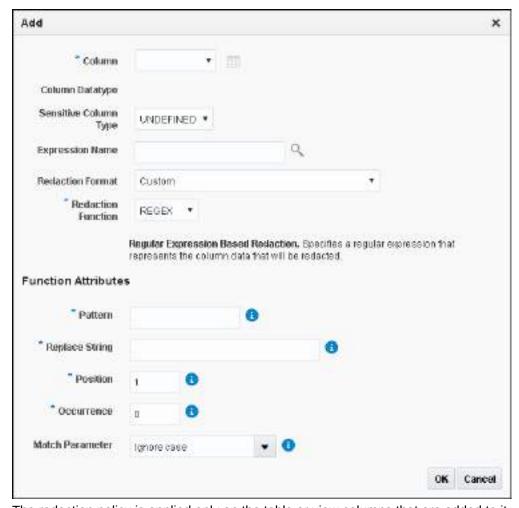
The URL is as follows:

https://host:port/em

- 2. From the Targets menu, select Databases.
- 3. Select **Search List**, then click the name of a database target for which you want to create an Oracle Data Redaction policy.
- On the home page of the database target, from the Security menu, select Data Redaction.
- 5. If you are prompted to do so, then log in to the database as a user who has the EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY system or schema privilege.
- 6. In the Policies section of the Policies tab, select **Create**.

If this is the first time that you are creating a Data Redaction policy, then the Data Redaction setup for enabling column sensitive type discovery dialog box appears. This feature enables the use of column sensitive type discovery for Data Redaction policies.

To accomplish this, Enterprise Manager creates the <code>GET_COL_DATA_SENSITIVE_TYPES</code> procedure in the <code>DBSNMP</code> schema. To perform a sensitive type discovery for a selected column while creating an Oracle Data Redaction policy, a user must have the <code>EXECUTE</code> privilege on the <code>DBSNMP.GET_COL_DATA_SENSITIVE_TYPES</code> procedure. If the database is


- protected by Oracle Database Vault, then ensure that any users who must create Data Redaction policies are participants to realms that protect the DBSNMP schema.
- 7. If the Data Redaction setup for enabling column sensitive type discovery dialog box appears and if the current login user does not have the correct requirements, select a credential of a user who has the EXECUTE privilege on DBSNMP.GET COL DATA SENSITIVE TYPES. Then click OK.
- 8. On the Create Data Redaction Policy page, enter the following information:
 - **Schema**: Enter (or search for) the name of the schema that contains the data you want to redact.
 - Table/View: Enter (or search for) the table or field that contains the column you want to redact.
 - Policy Name: Enter a name for the policy, such as emp wages pol.
 - Default Expression: Enter the default expression. The default setting is 1=1, which means that the policy will always be enforced. If you are not familiar with the components of a policy expression, then click the pencil icon beside the Policy Expression field to use Policy Expression Builder. Select Policy is in effect when, select the required conditions, then click Add. Click Edit if you want to edit the policy expression manually. After building the required policy expression, click OK. The Policy Expression Builder appears as follows:

In the Object Columns section, click Add to add a table or view column to the redaction policy.

A dialog box similar to the following appears:

The redaction policy is applied only on the table or view columns that are added to it.

10. From the **Column** menu, select the table or view column to which you want to apply the redaction policy.

To the right of the **Column** menu is an icon that you can click to view the contents of the selected column.

If the column contains sensitive data and has been mapped to a sensitive column type, then from the **Sensitive Column Type** menu, select the sensitive column type that it has been mapped to. If the search pattern in the **Sensitive Column Type** menu matches, then the sensitive column type is selected by default. For example, for a column listing credit card numbers, if there is a match, then the menu will list **Undefined** and **CREDIT_CARD_TYPE**. If there is no sensitive column type created, then the default **Sensitive Column Type** menu listing is only **Undefined**.

11. From the **Redaction Format** menu, select the redaction format that you want to use.

The drop-down list is populated with the Oracle Database-supplied redaction formats, as well as the custom redaction formats that you have created and saved. If you do not want to use a pre-defined redaction format (that is, an Oracle-Database supplied redaction format, or a custom redaction format that you have created), and instead want to specify the redaction details while creating the redaction policy, select **CUSTOM** for **Redaction Format**.

The Add dialog box adjusts to accommodate the type of redaction format and function that you select. For example, if you select the **CUSTOM** redaction format and the **REGEX** redaction function, then the Function Attributes region appears in the dialog box.

12. From the **Redaction Function** menu, select the function that you want to use to redact the column data.

Select **FULL** if you want to redact the entire column data, **PARTIAL** if you want to redact only a part of the column data, **REGEX** if you want to redact the column data based on a regular expression, **RANDOM** if you want to redact the column data in a random manner, using randomly generated values, or **NONE** if you only want to test the definition of the redaction policy, and not redact any column data. Note that all the redaction functions may not be applicable for a particular redaction format. The drop-down list displays only the redaction functions that are applicable for the selected redaction format. (Note that the Nullify redaction type is not supported in Oracle Enterprise Manager.)

If you selected **CUSTOM** for **Redaction Format** in the previous step, and **PARTIAL** or **REGEX** for **Redaction Function**, ensure that you specify the function attributes.

- 13. Click OK.
- **14.** Repeat these steps starting with Step 8 for all the columns that you want to add to the redaction policy.
- **15.** On the Create Data Redaction Policy page, click **OK** to create the data redaction policy.

When you create an Oracle Data Redaction policy, it is enabled by default.

Related Topics

- Creating a Custom Oracle Data Redaction Format Using Enterprise Manager
 You can create and save custom Oracle Data Redaction formats using Enterprise
 Manager Cloud Control.
- Oracle Data Redaction Features and Capabilities
 Oracle Data Redaction provides a variety of ways to redact different types of data.
- Enabling or Disabling an Oracle Data Redaction Policy in Enterprise Manager An Oracle Data Redaction policy is executed at run time only if it is enabled. When you create an Oracle Data Redaction policy, it is enabled by default.

16.5.3 Editing an Oracle Data Redaction Policy Using Enterprise Manager

You can edit an Oracle Data Redaction policy using Enterprise Manager Cloud Control.

 Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

The URL is as follows:

https://host:port/em

2. From the Targets menu, select Databases.

- 3. Select **Search List**, then search for and click the name of the database target for which the Oracle Data Redaction policy that you want to edit was created.
- On the home page of the database target, from the Security menu, select Data Redaction.
- 5. If you are prompted to do so, then log in to the database as a user who has the EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY system or schema privilege.
- 6. In the Policies section of the **Policies** tab, select the redaction policy that you want to edit, then click **Edit.**.

7. On the Edit Data Redaction Policy page, choose to edit the policy expression, add new columns to the redaction policy, modify the redaction details of a column that is part of the policy, or delete a column from the redaction policy.

You can do the following:

- To add a new column to the redaction policy, in the Object Columns section, click
 Add, select the table or view column that you want to add, then specify the redaction
 details.
- To modify the redaction details of a column that is part of the policy, select the column, click **Modify**, then edit the redaction details.
- To delete a column from the redaction policy, select the column, then click **Delete**.
- 8. On the Edit Data Redaction Policy page, after editing the required fields, click **OK** to save and enable the edited redaction policy.

16.5.4 Viewing Oracle Data Redaction Policy Details Using Enterprise Manager

You can find Oracle Data Redaction policy details such as whether the policy is enabled by using Enterprise Manager Cloud Control.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

The URL is as follows:

- 2. From the Targets menu, select Databases.
- Select Search List, then search for and click the name of the database target for which the Oracle Data Redaction policy that you want to view was created.
- On the home page of the database target, from the Security menu, select Data Redaction.
- Log in to the database as a user who has privileges to view information in Oracle Data Redaction data dictionary views.
- 6. In the Policies section of the Policies tab, do one of the following:
 - Select the name of the policy in the table.
 - Select the required redaction policy, then click View.
- To exit, click OK.

16.5.5 Enabling or Disabling an Oracle Data Redaction Policy in Enterprise Manager

An Oracle Data Redaction policy is executed at run time only if it is enabled. When you create an Oracle Data Redaction policy, it is enabled by default.

You can disable an enabled redaction policy, or enable a disabled redaction policy using Enterprise Manager Cloud Control.

 Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

The URL is as follows:

https://host:port/em

- 2. From the Targets menu, select Databases.
- Select Search List, then search for and click the name of the database target for which the Oracle Data Redaction policy that you want to enable or disable was created.
- On the home page of the database target, from the Security menu, select Data Redaction.
- 5. If you are prompted to do so, then log in to the database as a user who has the EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY system or schema privilege.
- 6. In the Policies section of the Policies tab, select the redaction policy that you want to enable or disable, and then click **Enable** or **Disable**.

7. In the Confirmation dialog box, click **Yes** or **No**.

16.5.6 Deleting an Oracle Data Redaction Policy Using Enterprise Manager

You can delete an Oracle Data Redaction policy using Enterprise Manager Cloud Control.

Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

The URL is as follows:

https://host:port/em

- 2. From the Targets menu, select Databases.
- 3. Select **Search List**, then search for and click the name of the database target for which the Oracle Data Redaction policy that you want to delete was created.
- On the home page of the database target, from the Security menu, select Data Redaction.
- 5. Log in to the database, if you are prompted to do so.
 - Ensure that you log in to the database as a user that has the EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY system or schema privilege.
- In the Policies section of the Policies tab, select the redaction policy that you want to delete, and then click **Delete**.
- 7. In the Confirmation dialog box, click Yes or No.

16.6 Managing Named Data Redaction Policy Expressions Using Enterprise Manager

You can manage Oracle Data Redaction policy expressions in Enterprise Manager Cloud Control.

- About Named Data Redaction Policy Expressions in Enterprise Manager
 You can create and apply named Oracle Data Redaction policy expression to multiple columns in tables and views in Oracle Enterprise Manager Cloud Control.
- Creating a Named Data Redaction Policy Expression in Enterprise Manager
 You can create and apply a named Oracle Data Redaction policy expression using Enterprise Manager Cloud Control.
- Editing a Named Data Redaction Policy Expression in Enterprise Manager
 You can edit a named Oracle Data Redaction policy expression using Enterprise Manager Cloud Control.
- Viewing Named Data Redaction Policy Expressions in Enterprise Manager
 You can view named Oracle Data Redaction policy expressions using Enterprise
 Manager Cloud Control.
- Deleting a Named Data Redaction Policy Expression in Enterprise Manager
 You can delete named Oracle Data Redaction policy expressions using Enterprise
 Manager Cloud Control.

16.6.1 About Named Data Redaction Policy Expressions in Enterprise Manager

You can create and apply named Oracle Data Redaction policy expression to multiple columns in tables and views in Oracle Enterprise Manager Cloud Control.

When you modify the policy expression, the change is reflected in all redacted columns in the database instance that use the policy expression. Cloud Control enables you to create, edit, view, apply to columns, and delete policy expressions.

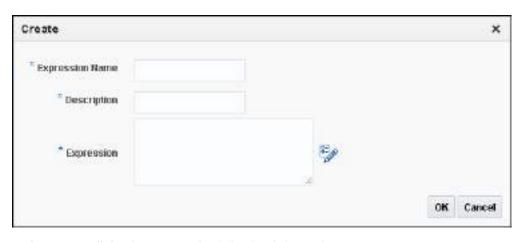
Related Topics

Creating and Managing Multiple Named Policy Expressions
 A named, centrally managed Oracle Data Redaction policy expression can be used in multiple redaction policies and applied to multiple tables or views.

16.6.2 Creating a Named Data Redaction Policy Expression in Enterprise Manager

You can create and apply a named Oracle Data Redaction policy expression using Enterprise Manager Cloud Control.

 Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.


The URL is as follows:

https://host:port/em

- From the Targets menu, select Databases.
- 3. Select **Search List**, then click the name of a database target for which you want to create an Oracle Data Redaction policy.
- On the home page of the database target, from the Security menu, select Data Redaction.
- 5. If you are prompted to do so, then log in to the database as a user who has the EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY system or schema privilege.
- 6. On the Oracle Data Redaction page, select the **Expressions** tab.
- 7. Click Create.

The Create dialog box appears.

- 8. In the Create dialog box, enter the following information:
 - **Expression Name**: Enter a name for the policy expression. Existing policy expressions are listed on the Data Redaction page.
 - Description: Enter a brief description of the policy.
 - Expression: Enter the expression. For more complex expressions, such as applying
 or exempting the policy from specific users, click the Policy Expression Builder icon
 at the right of the Expression field. Click OK in the Policy Expression Builder to
 create the expression.
- 9. Click **OK** in the Create dialog box.

After you create the policy expression, it is listed in the Data Redaction page and ready to be associated with a Data Redaction policy.

- 10. In the Data Redaction page, select the **Policies** tab.
- 11. Under Policies, select the row for the policy that redacts the column to which you want to apply the policy expression, and then click **Edit**.
- 12. Under Object Columns, select the column that you want and then click the Modify button.
- **13.** In the Modify dialog box, select the expression from the **Expression Name** list.
- 14. Click **OK**, and then click **OK** again in the Edit Data Redaction Policy dialog box.

16.6.3 Editing a Named Data Redaction Policy Expression in Enterprise Manager

You can edit a named Oracle Data Redaction policy expression using Enterprise Manager Cloud Control.

Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

The URL is as follows:

- 2. From the Targets menu, select Databases.
- 3. Select **Search List**, then click the name of a database target for which you want to create an Oracle Data Redaction policy.
- On the home page of the database target, from the Security menu, select Data Redaction.

- 5. If you are prompted to do so, then log in to the database as a user who has the EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY system or schema privilege.
- 6. On the Oracle Data Redaction page, select the **Expressions** tab.
- 7. Select the policy expression that you want to edit and then click **Edit**.

- 8. In the Edit dialog box, modify the **Description** and **Expression** fields as necessary. For more complex expressions, click the Policy Expression Builder icon, and then click **OK** after you have recreated the expression.
- 9. Click **OK** in the Edit dialog box.

16.6.4 Viewing Named Data Redaction Policy Expressions in Enterprise Manager

You can view named Oracle Data Redaction policy expressions using Enterprise Manager Cloud Control.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

The URL is as follows:

- 2. From the **Targets** menu, select **Databases**.
- 3. Select **Search List**, then click the name of a database target for which you want to create an Oracle Data Redaction policy.
- On the home page of the database target, from the Security menu, select Data Redaction.
- 5. Log in to the database as a user who has privileges to view information in Oracle Data Redaction data dictionary views.
- **6.** On the Oracle Data Redaction page, select the **Expressions** tab.
- Select the policy expression that you want to view and then click View.
 The View dialog box appears, showing the definition of the policy expression.
- 8. Click **OK** to exit the View dialog box.

16.6.5 Deleting a Named Data Redaction Policy Expression in Enterprise Manager

You can delete named Oracle Data Redaction policy expressions using Enterprise Manager Cloud Control.

The deletion process first dissociates the policy expression from all columns to which it is applied.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

The URL is as follows:

- From the Targets menu, select Databases.
- 3. Select **Search List**, then click the name of a database target for which you want to create an Oracle Data Redaction policy.
- On the home page of the database target, from the Security menu, select Data Redaction.
- 5. If you are prompted to do so, then log in to the database as a user who has the EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY system or schema privilege.
- 6. On the Oracle Data Redaction page, select the Expressions tab.
- Select the policy expression that you want to delete, and then click **Delete**.
 The Delete Expressions confirmation dialog box appears.
- 8. Click OK.

17

Using Oracle Data Redaction with Oracle Database Features

Oracle Data Redaction can be used with other Oracle features, but some Oracle features may have restrictions with regard to Oracle Data Redaction.

- Oracle Data Redaction General Usage Guidelines
 It is important to understand usage guidelines for using Oracle Data Redaction.
- Oracle Data Redaction and DML and DDL Operations
 Oracle Data Redaction affects DML and DDL operations, especially for users who issue ad-hoc SQL against tables with redacted columns.
- Oracle Data Redaction and Nested Functions, Inline Views, and the WHERE Clause You can use Oracle Data Redaction with nested functions, inline views, and the WHERE clause in SELECT statements.
- Oracle Data Redaction and Queries on Columns Protected by Data Redaction Policies
 Queries that include the DISTINCT clause on columns that are protected by Oracle Data
 Redaction policies may return fewer rows. Similarly, SQL queries that include the UNION
 clause between SQL statements selecting columns that are protected by Oracle Data
 Redaction policies may return fewer rows.
- Oracle Data Redaction and Database Links
 Do not create Oracle Data Redaction policies on database views that reference database links.
- Oracle Data Redaction and Aggregate Functions
 Aggregate functions can affect performance overhead on Oracle Data Redaction policies.
- Oracle Data Redaction and Object Types
 You can use object types to model real-world entities such as customer accounts.
- Oracle Data Redaction and XML Generation
 You cannot use XML generation functions on columns that have Oracle Data Redaction policies defined on them.
- Oracle Data Redaction and Editions
 You cannot redact editioned views. You cannot redact editionable views in an editions-enabled schema.
- Oracle Data Redaction and Oracle Data Warehouse Query Rewrite Operation
 Oracle Data Warehouse request queries are subject to any Oracle Data Redaction
 policies that are present against the relations that are specified in the query.
- Oracle Data Redaction and Oracle Virtual Private Database
 Oracle Data Redaction does not affect Oracle Virtual Private Database policies because the VPD inline view, which contains the VPD predicate, acts on actual values.
- Oracle Data Redaction and Oracle Database Real Application Security
 Oracle Data Redaction differs from Oracle Database Real Application Security because of how security is implemented for applications.

- Oracle Data Redaction and Oracle Database Vault
 You can use Oracle Data Redaction in an Oracle Database Vault environment.
- Oracle Data Redaction and Oracle Data Pump
 Oracle Data Pump export operations can affect objects that have Oracle Data Redaction policies.
- Oracle Data Redaction and Data Masking and Subsetting Pack
 Oracle Enterprise Manager Data Masking and Subsetting Pack can be used to create a development or test copy of a production database.
- Oracle Data Redaction and JSON
 You can use JavaScript Object Notation (JSON) on redacted data.

17.1 Oracle Data Redaction General Usage Guidelines

It is important to understand usage guidelines for using Oracle Data Redaction.

- Do not include any redacted columns in a SQL expression that is used in a GROUP BY clause and SELECT list in a SQL statement. Oracle does not support this, and raises an ORA-00979: not a GROUP BY expression error. This happens because internally the expression in the SELECT list must be modified by Data Redaction, but this causes it to no longer be found when it comes time to process the GROUP BY clause (which is currently not updated by Data Redaction) leading to this unintended error message.
- Do not include any redacted columns in a SQL expression that is used in both the DISTINCT clause and ORDER BY clause in a SQL statement. Oracle does not support this, and raises an error: ORA-01791: not a SELECTED expression. This happens because internally the expression in the SELECT list must be modified by Data Redaction, but this causes it to no longer be found when it comes time to process the ORDER BY clause, leading to this unintended error message. To work around this issue, rewrite the query to include an inline view so that the semantic layer can find the column. For example, instead of the following query:

```
SELECT DISTINCT sensitive_column FROM table_name
ORDER BY sensitive_column;
```

Rewrite the guery as follows:

```
SELECT sensitive_column FROM (SELECT DISTINCT sensitive_column FROM table_name ORDER BY sensitive_column);
```

An ORA-28094: SQL construct not supported by data redaction error is
raised for complex SQL queries that involve redacted columns for users who are
not exempt from the redaction policy. This error is not raised if the users who are
running the complex SQL queries have the EXEMPT REDACTION POLICY system or
schema privilege.

To avoid the ORA-28094 error, ensure that the guery has the following properties:

- When a column in the UNION has a redaction policy, the corresponding column in each branch of the UNION must use a redaction policy with the same values for all of its properties:
 - * Function type
 - * Function parameters or REGEXP parameters
 - * Policy expression
 - * Enable flag

It can be a different redaction policy, but all these properties must be the same.

- In an inline view, a UNION cannot have a subquery.
- In a CREATE VIEW definition or an inline view, there cannot be any SQL expressions (such as concat, sum, trim, min, max, and so on) that involve a redacted column. The WITH clause is also processed as an inline view, thus there cannot be any SQL expressions that involve a redacted column in the WITH clause.
- An ORA-28093: operation on column %s is not supported by data redaction error is raised if a user issues a query that involves XML syntax and if the user does not have the EXEMPT REDACTION POLICY system privilege. The ORA-28093 is raised only for users who are not exempt from the redaction policy, and they cannot use XML syntax that involves redacted columns, whereas, user who are exempt from the redaction policy are allowed to.
- Oracle does not support the following:
 - Adding a Data Redaction policy on a virtual column
 A user with access to the DBA_TAB_COLS data dictionary view can look in the
 VIRTUAL_COLUMN column of DBA_TAB_COLS using the following query to find the virtual column to see if it is being provided to a DBMS_REDACT call to create a Data Redaction policy.

```
SELECT COLUMN_ID, COLUMN_NAME, VIRTUAL_COLUMN
FROM DBA_TAB_COLS
WHERE TABLE_NAME = 'table_name_that_you_attempted_to_redact'
AND VIRTUAL_COLUMN = 'YES'
ORDER BY COLUMN ID;
```

Adding a Data Redaction policy on the base column of a virtual column A user with access to the DBA_TAB_COLS data dictionary view can look in the DATA_DEFAULT column of DBA_TAB_COLS using the following query to find the virtual column expression (that is internally created for the above), to see if it contains any column name that is being provided to a DBMS_REDACT call to create a Data Redaction policy.

```
SELECT COLUMN_ID, COLUMN_NAME, VIRTUAL_COLUMN, DATA_DEFAULT FROM DBA_TAB_COLS
WHERE TABLE_NAME = 'table_name_that_you_attempted_to_redact'
AND VIRTUAL_COLUMN = 'YES'
ORDER BY COLUMN ID;
```

Adding a Data Redaction policy on the base column of a functional index
 A user with access to the DBA_TAB_COLS data dictionary view can look in the
 DATA_DEFAULT column of DBA_TAB_COLS using the following query to find the virtual column expression (that is internally created for the functional index being provided to

a DBMS_REDACT PL/SQL call), to see if it contains any column name that is being provided to a DBMS_REDACT call to create a Data Redaction policy.

```
SELECT COLUMN_ID, COLUMN_NAME, VIRTUAL_COLUMN, DATA_DEFAULT FROM DBA_TAB_COLS
WHERE TABLE_NAME = 'table_name_that_you_attempted_to_redact'
AND VIRTUAL_COLUMN = 'YES'
ORDER BY COLUMN ID;
```

Adding a Data Redaction policy on any column which is part of extended statistics

A user with access to the DBA_TAB_COLS data dictionary view can look in the DATA_DEFAULT column of DBA_TAB_COLS using the following query to find the virtual column expression (that is internally created for the extended statistics being provided to a DBMS_REDACT PL/SQL call), to see if it contains any column name that is being provided to a DBMS_REDACT call to create a Data Redaction policy.

```
SELECT COLUMN_ID, COLUMN_NAME, VIRTUAL_COLUMN, DATA_DEFAULT
FROM DBA_TAB_COLS
WHERE TABLE_NAME = 'table_name_that_you_attempted_to_redact'
AND VIRTUAL_COLUMN = 'YES'
ORDER BY COLUMN_ID;
```

 Adding a virtual column whose base column has a Data Redaction policy defined on it

You can look in the <code>COLUMN_NAME</code> column of <code>REDACTION_COLUMNS</code> data dictionary view using the following query to check if the column being used to create a virtual column has Data Redaction policy defined on it.

```
SELECT OBJECT_NAME, COLUMN_NAME
FROM REDACTION_COLUMNS
WHERE COLUMN NAME = 'column name that is used for virtual expr';
```

- Creating a functional index on a column with Data Redaction policy
- Creating extended statistics on a column with Data Redaction policy

17.2 Oracle Data Redaction and DML and DDL Operations

Oracle Data Redaction affects DML and DDL operations, especially for users who issue ad-hoc SQL against tables with redacted columns.

Note the following:

- Oracle Data Redaction treats the RETURNING INTO clause of a DML statement as a
 query, even though the result is not displayed. The result that is sent to the buffer
 is what would have been displayed had the RETURNING INTO clause been run as
 an ordinary SQL query, rather than as part of a DML statement. If your application
 performs further processing on the buffer that contains the RETURNING INTO value,
 then consider changing the application because it may not expect to find a
 redacted value in the buffer.
- If a redacted column appears as the source in a DML or DDL operation, then Oracle Data Redaction considers this as an attempt to circumvent the policy and

prevents it with an ORA-28081: Insufficient privileges. The command references a redacted object error unless you have the EXEMPT REDACTION POLICY privilege. Note that the EXEMPT REDACTION POLICY privilege can be granted at the schema in addition to the system level. Internally, Oracle Data Pump issues these kinds of operations, so you may also need to grant the EXEMPT REDACTION POLICY privilege at the schema or system level to a user if they need to perform schema-level exports of tables that have redacted columns.

• Internally, Oracle Data Mining issues DML and DDL operations, so you may need to grant the EXEMPT REDACTION POLICY system privilege to a user if the user must create data mining models on tables that have redacted columns.

Related Topics

Privileges for Managing Oracle Data Redaction Policies
 Because data redaction involves the protection of highly sensitive data, only trusted users should create Oracle Data Redaction policies.

17.3 Oracle Data Redaction and Nested Functions, Inline Views, and the WHERE Clause

You can use Oracle Data Redaction with nested functions, inline views, and the WHERE clause in SELECT statements.

Oracle Data Redaction policies work as follows:

- Nested functions work on redacted data. For example, in SELECT SUM(AVG(TO_NUMBER(((X)))) FROM HR.EMPLOYEES WHERE ..., the column X is redacted first and the functions are then executed on the redacted data with the execution order being innermost to outer.
- Inline views are redacted outermost. For example, in SELECT XYZ ... AS SELECT A... AS SELECT B... AS SELECT C..., only SELECT XYZ is redacted after the execution of SELECT C, SELECT B, and SELECT A.
- The WHERE clause is never redacted. Data Redaction redacts only data in the column SELECT list.

17.4 Oracle Data Redaction and Queries on Columns Protected by Data Redaction Policies

Queries that include the DISTINCT clause on columns that are protected by Oracle Data Redaction policies may return fewer rows. Similarly, SQL queries that include the UNION clause between SQL statements selecting columns that are protected by Oracle Data Redaction policies may return fewer rows.

This happens because redaction is performed on the column first and then the <code>DISTINCT</code> clause is applied on the redacted data. Similarly, for the <code>UNION</code> case, column is redacted first and then the <code>UNION</code> is applied on the redacted data from the <code>SELECT</code> statements.

To work around this issue, rewrite the queries to include an inline view so that the DISTINCT or UNION operation occurs before redaction. For example, instead of the following queries:


```
SELECT DISTINCT sensitive_column
FROM table_name;

SELECT sensitive_column FROM table_name
UNION
SELECT sensitive_column FROM table_name;
```

Rewrite the queries as follows:

```
SELECT sensitive_column FROM
(SELECT DISTINCT sensitive_column
FROM table_name);

SELECT sensitive_column FROM
(SELECT sensitive_column FROM table_name
UNION
SELECT sensitive_column FROM table_name);
```

17.5 Oracle Data Redaction and Database Links

Do not create Oracle Data Redaction policies on database views that reference database links.

You can find information about existing database links by querying the <code>DBA_DB_LINKS</code> data dictionary view.

Related Topics

Oracle Database Administrator's Guide

17.6 Oracle Data Redaction and Aggregate Functions

Aggregate functions can affect performance overhead on Oracle Data Redaction policies.

Because Oracle Data Redaction dynamically modifies the value of each row in a column, certain SQL queries that use aggregate functions cannot take full advantage of database optimizations that presume the row values to be static.

In the case of SQL queries that call aggregate functions, it may be possible to notice performance overhead due to redaction.

17.7 Oracle Data Redaction and Object Types

You can use object types to model real-world entities such as customer accounts.

An object type is a user-defined type. You cannot redact object types. This is because Database Redaction cannot handle all of the possible ways that object types can be configured, because they are user defined. You can find the type that an object uses by querying the <code>OBJECT_NAME</code> and <code>OBJECT_TYPE</code> columns of the <code>ALL_OBJECTS</code> data dictionary view.

17.8 Oracle Data Redaction and XML Generation

You cannot use XML generation functions on columns that have Oracle Data Redaction policies defined on them.

This restriction applies irrespective of whether the Oracle Data Redaction policy has been enabled or disabled, or is active for the querying user.

Related Topics

Oracle XML DB Developer's Guide

17.9 Oracle Data Redaction and Editions

You cannot redact editioned views. You cannot redact editionable views in an editions-enabled schema.

In addition to these two restrictions, you cannot use a redacted column in the definition of any editioned view. You can find information about editions by querying the $DBA_EDITIONS$ data dictionary view.

17.10 Oracle Data Redaction and Oracle Data Warehouse Query Rewrite Operation

Oracle Data Warehouse request queries are subject to any Oracle Data Redaction policies that are present against the relations that are specified in the query.

Query rewrite may rewrite the query to use a materialized view instead of accessing the detail relations, but only if it can guarantee to deliver exactly the same results as if the rewrite had not occurred. Specifically, the query rewrite must retain and respect any Oracle Data Redaction policies against the relations that are specified in the request query. However, any Oracle Data Redaction policies against the materialized view itself do not have any effect when the materialized view is accessed during query rewrite. This is because the data is already protected by the Oracle Data Redaction policies against the relations in the request query.

17.11 Oracle Data Redaction and Oracle Virtual Private Database

Oracle Data Redaction does not affect Oracle Virtual Private Database policies because the VPD inline view, which contains the VPD predicate, acts on actual values.

Oracle Data Redaction differs from Oracle Virtual Private Database in the following ways:

- Oracle Data Redaction provides more redacting features than Oracle Virtual Private Database, which only supports NULL redacting. Many applications cannot use NULL redacting, so Data Redaction is a good solution for these applications.
- Oracle Virtual Private Database policies can be static, dynamic, and context sensitive, whereas Data Redaction policies only allow static and context-sensitive policy expressions.
- Data Redaction permits only one policy to be defined on a table or view, whereas you can
 define multiple Virtual Private Database policies on an object.
- Application users can access an object that is protected by a Data Redaction policy using a synonym, but (unlike Oracle Virtual Private Database) Data Redaction does not support the creation of policies directly on the synonyms themselves.

17.12 Oracle Data Redaction and Oracle Database Real Application Security

Oracle Data Redaction differs from Oracle Database Real Application Security because of how security is implemented for applications.

Oracle Data Redaction differs from Oracle Database Real Application Security in that Real Application Security provides a comprehensive authorization framework for application security.

Column security within Real Application Security is based on application privileges that are defined by applications using the Real Application Security framework.

Related Topics

Oracle Database Real Application Security Administrator's and Developer's Guide

17.13 Oracle Data Redaction and Oracle Database Vault

You can use Oracle Data Redaction in an Oracle Database Vault environment.

For example, if there is an Oracle Database Vault realm around an object, a user who does not belong to the authorized list of realm owners or participants cannot see the object data, regardless of whether the user was granted the EXEMPT REDACTION POLICY privilege. If the user attempts a DML or DDL statement on the data, error messages result.

17.14 Oracle Data Redaction and Oracle Data Pump

Oracle Data Pump export operations can affect objects that have Oracle Data Redaction policies.

- Oracle Data Pump Security Model for Oracle Data Redaction
 The DATAPUMP_EXP_FULL_DATABASE role includes the powerful EXEMPT REDACTION POLICY system privilege.
- Export of Objects That Have Oracle Data Redaction Policies Defined You can export objects that have already had Oracle Data Redaction policies defined on them.
- Export of Data Using the EXPDP Utility access_method Parameter
 Oracle Data Pump can export data from a schema that contains an object that has a Data Redaction policy.
- Import of Data into Objects Protected by Oracle Data Redaction
 During import operations into Oracle Data Redaction-protected objects, be aware
 of issues that may occur.

17.14.1 Oracle Data Pump Security Model for Oracle Data Redaction

The DATAPUMP_EXP_FULL_DATABASE role includes the powerful EXEMPT REDACTION POLICY system privilege.

Remember that by default the DBA role is granted the DATAPUMP_EXP_FULL_DATABASE role as well as the DATAPUMP_IMP_FULL_DATABASE role.

This enables users who were granted these roles to be exempt from Data Redaction policies. This means that, when you export objects with Data Redaction policies defined on them, the actual data in the protected tables is copied to the Data Pump target system without being redacted. Users with these roles, including users who were granted the DBA role, are able to see the actual data in the target system.

However, by default, all of the Data Redaction policies associated with any tables and views in the Data Pump source system are also included in the export and import operation (along with the objects themselves) and applied to the objects in the target system, so the data is still redacted when users query the objects in the target system.

Related Topics

Exemption of Users from Oracle Data Redaction Policies
 You can exempt users from having Oracle Data Redaction policies applied to the data they access.

17.14.2 Export of Objects That Have Oracle Data Redaction Policies Defined

You can export objects that have already had Oracle Data Redaction policies defined on them.

- Finding Object Types Used by Oracle Data Pump
 You must find the object types that Oracle Data Pump uses before exporting objects that have Oracle Data Redaction policies defined on them.
- Exporting Only the Data Dictionary Metadata Related to Data Redaction Policies
 You can export only the data dictionary metadata using Oracle Database Pump metadata filters.
- Importing Only the Data Dictionary Metadata Using the INCLUDE Parameter in IMPDP You can import only the data dictionary metadata using Oracle Database Pump metadata filters.

17.14.2.1 Finding Object Types Used by Oracle Data Pump

You must find the object types that Oracle Data Pump uses before exporting objects that have Oracle Data Redaction policies defined on them.

After you find these object types, you should use these object types as parameters for the INCLUDE directive to the EXPDP utility, to selectively export only metadata of these specific object types to the dump file.

To find the object types, query the DATABASE EXPORT OBJECTS view.

For example:

```
SELECT OBJECT_PATH
FROM DATABASE_EXPORT_OBJECTS
WHERE OBJECT PATH LIKE 'RADM %';
```

Output similar to the following appears:


```
OBJECT_PATH
-----
RADM_FPTM
RADM_POLICY
RADM_POLICY_EXPR
```

17.14.2.2 Exporting Only the Data Dictionary Metadata Related to Data Redaction Policies

You can export only the data dictionary metadata using Oracle Database Pump metadata filters.

This kind of Data Pump export could, for example, be used if you must use the same set of Data Redaction policies and settings across development, test, and production databases. Because the flag content=metadata_only is specified, the dump file does not contain any actual data.

• To export only the data dictionary metadata related to data redaction policies, full redaction settings, and policy expressions, include RADM_POLICY, RADM_FPTM, and RADM_POLICY_EXPR in the EXPDP utility command similar to the following:

```
expdp system/password \
full=y \
COMPRESSION=NONE \
content=metadata_only \
INCLUDE=RADM_FPTM,RADM_POLICY,RADM_POLICY_EXPR \
directory=my_directory \
job_name=my_job_name \
dumpfile=my_data_redaction_policy_metadata.dmp
```

Related Topics

- Oracle Database Utilities
- Oracle Database Utilities

17.14.2.3 Importing Only the Data Dictionary Metadata Using the INCLUDE Parameter in IMPDP

You can import only the data dictionary metadata using Oracle Database Pump metadata filters.

• To import only the data dictionary metadata related to data redaction policies, full redaction settings, and policy expressions, include RADM_POLICY, RADM_FPTM, and RADM_POLICY_EXPR in the IMPDP utility command similar to the following:

```
impdp system/password \
full=y \
content=metadata_only \
INCLUDE=RADM_FPTM, RADM_POLICY, RADM_POLICY_EXPR \
directory=my_directory \
job_name=my_job_name \
dumpfile=my_data_redaction_policy_metadata.dmp
```


17.14.3 Export of Data Using the EXPDP Utility access_method Parameter

Oracle Data Pump can export data from a schema that contains an object that has a Data Redaction policy.

If you are using Oracle Data Pump to perform full database export operations using the Data Pump default settings (direct_path), and if you receive error messages that you do not understand, then use this section to repeat the operation in such a way as to better understand the error.

If you try to use the Oracle Data Pump Export (EXPDP) utility with the <code>access_method</code> parameter set to <code>direct_path</code> to export data from a schema that contains an object that has a Data Redaction policy defined on it, then the following error message may appear and the export operation fails:

ORA-31696: unable to export/import TABLE_DATA:"schema.table" using client specified DIRECT PATH method

This problem only occurs when you perform a schema-level export as a user who was not granted the <code>EXP_FULL_DATABASE</code> role. It does not occur during a full database export, which requires the <code>EXP_FULL_DATABASE</code> role. The <code>EXP_FULL_DATABASE</code> role includes the <code>EXEMPT REDACTION POLICY</code> system privilege, which bypasses Data Redaction policies.

To find the underlying problem, try the EXPDP invocation again, but do not set the access_method parameter to direct_path. Instead, use either automatic or external_table. The underlying problem could be a permissions problem, for example:

ORA-28081: Insufficient privileges - the command references a redacted object.

Related Topics

Oracle Database Utilities

17.14.4 Import of Data into Objects Protected by Oracle Data Redaction

During import operations into Oracle Data Redaction-protected objects, be aware of issues that may occur.

Inadvertent Drop of Oracle Data Redaction Policies

During an import operation, be careful that you do not inadvertently drop data redaction policies that protect imported data.

Consider a scenario in which the source tables that were exported using the Oracle Data Pump Export (EXPDP) utility do not have Oracle Data Redaction polices. However, the destination tables to which the data is to be imported by using Oracle Data Pump Import (IMPDP) have Oracle Data Redaction policies.

During the Data Pump import operation, the status of the Data Redaction policies on the objects being imported depends on the CONTENT option of IMPDP command.

- If you use the CONTENT=ALL or CONTENT=METADATA_ONLY option in the IMPDP command, then the Data Redaction policies on the destination tables are dropped. You must recreate the Data Redaction policies.
- If you use CONTENT=DATA_ONLY in the IMPDP command, then the Data Redaction polices on the destination tables are not dropped.

Data Redaction Policy Not Being Imported

During an import operation, you could get an ORA-28069: A Data Redaction Policy Already Exists On This Object error.

Consider a scenario in which the source tables that were exported using the Oracle Data Pump Export (EXPDP) utility have Oracle Data Redaction policies. The destination tables to which the data is being imported by using Oracle Data Pump (IMPDP) also have Oracle Data Redaction policies.

During the Data Pump import operation, you could get the ORA-28069 error. To avoid this error, you must import only the data using the CONTENT=DATA_ONLY parameter. Alternatively, you can drop the redaction policies on the target objects and then import all the data.

Related Topics

Oracle Database Utilities

17.15 Oracle Data Redaction and Data Masking and Subsetting Pack

Oracle Enterprise Manager Data Masking and Subsetting Pack can be used to create a development or test copy of a production database.

To accomplish this, you can mask this data in bulk, and then put the resulting masked data in the development or test copy.

You can still apply Data Redaction policies to the non-production database, in order to redact columns that contain data that was already masked by Oracle Enterprise Manager Data Masking and Subsetting Pack.

Remember that Oracle Enterprise Manager Data Masking and Subsetting Pack is used to mask data sets when you want to move the data to development and test environments. Data Redaction is mainly designed for redacting at runtime for production applications in a consistent fashion across multiple applications, without having to make application code changes.

17.16 Oracle Data Redaction and JSON

You can use JavaScript Object Notation (JSON) on redacted data.

You can create is ison constraints on table columns.

However, you cannot create an Oracle Data Redaction policy on a table column that has the <code>is json</code> constraint. If you attempt to do so, an <code>ORA-28073 - The column column_name</code> has an unsupported datatype error is raised. As a workaround solution, Oracle recommends that you create a relational view that uses the <code>JSON_TABLE</code> row source operator on top of the <code>JSON</code> object, and then apply the Data Redaction policy to this view.

The following example shows how you can use <code>json_table</code> to create a relational view and add a data redaction policy to this view.

```
create table tab1
        (c1 varchar2(4000) check (c1 is json))
insert into tab1 values
('{"id" : 4,
   "name" : "Large blue soda cup",
   "price" : 12,
   "tags" : ["large1", "green"],
   "phone": "1-415-555-0100"}'
)
create or replace view json view1 as
 select t.* from tab1,
  json table(c1, '$' columns
       id number path '$.id',
       name varchar2(20) path '$.name',
       price number path '$.price',
       phone varchar2(20) path '$.phone') t;
```

If the owner of the view queries column phone, then it is not redacted. Now, the redaction policy can be added on any of the columns in the view (such as phone, price, and so on).

You can create JSON duality views on top of redacted data.
 However, there is a restriction to this ability: columns enabled for redaction cannot be primary keys and cannot be part of the Duality View Entity Tag (ETAG).

Related Topics

- Oracle Database SQL Language Reference
- Oracle Database JSON Developer's Guide
- JSON-Relational Duality Developer's Guide

18

Security Considerations for Oracle Data Redaction

Oracle provides guidelines for using Oracle Data Redaction.

- Oracle Data Redaction General Security Guidelines
 It is important to understand general security guidelines for using Oracle Data Redaction.
- Restriction of Administrative Access to Oracle Data Redaction Policies
 You can restrict the list of users who can create, view, and edit Data Redaction policies.
- How Oracle Data Redaction Affects the SYS, SYSTEM, and Default Schemas
 Both users SYS and SYSTEM automatically have the EXEMPT REDACTION POLICY system privilege.
- Policy Expressions That Use SYS_CONTEXT Attributes
 Be careful when writing a policy expression that depends on a SYS_CONTEXT attribute that is populated by an application.
- Oracle Data Redaction Policies on Materialized Views
 You can create Oracle Data Redaction policies on materialized views and on their base tables.
- REDACTION_COLUMNS Data Dictionary View Behavior When a View Is Invalid
 When an Oracle Data Redaction policy exists on a column of a view, and the view
 becomes invalid, the Data Redaction policy remains visible in the REDACTION_COLUMNS
 data dictionary view.
- Dropped Oracle Data Redaction Policies When the Recycle Bin Is Enabled You should check if the recycle bin is enabled before you drop Oracle Data Redaction policies.

18.1 Oracle Data Redaction General Security Guidelines

It is important to understand general security guidelines for using Oracle Data Redaction.

- Oracle Data Redaction is not intended to protect against attacks by regular and privileged database users who run ad hoc queries directly against the database. If the user can issue arbitrary SQL or PL/SQL statements, then they will be able to access the actual value.
- Oracle Data Redaction is not intended to protect against users who run ad hoc SQL
 queries that attempt to determine the actual values by inference. Inference refers to the
 process that is designed to find actual data by repeatedly trying queries. For example, to
 find the users who earn the highest salaries, an intruder could use the following query
 where column salary is redacted:

SELECT FIRST_NAME, LAST_NAME, SALARY FROM HR.EMPLOYEES
WHERE SALARY > 16000
ORDER BY SALARY DESC;

FIRST_NAME	LAST_NAME	SALARY
Steven	King	0
Neena	Kochhar	0
Lex	De Haan	0

- Oracle Data Redaction relies on the database and application context values. For applications, it is the responsibility of the application to properly initialize the context value.
- Oracle Data Redaction is not enforced for users who are logged in using the SYSDBA administrative privilege.
- Certain DDL statements that attempt to copy the actual data out from under the control of a data redaction policy (that is, CREATE TABLE AS SELECT, INSERT AS SELECT) are blocked by default, but you can disable this behavior by granting the user the EXEMPT REDACTION POLICY system privilege.
- Oracle Data Redaction does not affect day-to-day database operations, such as backup and recovery, Oracle Data Pump exports and imports, Oracle Data Guard operations, and replication.

18.2 Restriction of Administrative Access to Oracle Data Redaction Policies

You can restrict the list of users who can create, view, and edit Data Redaction policies.

To accomplish this, you can limit who has the EXECUTE privilege on the DBMS_REDACT package and ADMINISTER REDACTION POLICY privilege and by limiting who has the SELECT privilege on the REDACTION POLICIES and REDACTION COLUMNS views.

You also can restrict who is exempted from redaction by limiting the EXEMPT REDACTION POLICY privilege. If you use Oracle Database Vault to restrict privileged user access, then you can use realms to restrict granting of EXEMPT REDACTION POLICY.

Related Topics

- Oracle Data Redaction and Oracle Database Vault
 You can use Oracle Data Redaction in an Oracle Database Vault environment.
- Exemption of Users from Oracle Data Redaction Policies
 You can exempt users from having Oracle Data Redaction policies applied to the data they access.
- Introduction to Oracle Database Vault

18.3 How Oracle Data Redaction Affects the SYS, SYSTEM, and Default Schemas

Both users SYS and SYSTEM automatically have the EXEMPT REDACTION POLICY system privilege.

SYSTEM has the EXP_FULL_DATABASE role, which includes the EXEMPT REDACTION POLICY system privilege.

This means that the SYS and SYSTEM users can always bypass any existing Oracle Data Redaction policies, and will always be able to view data from tables (or views) that have Data Redaction policies defined on them.

A data redaction policy cannot be applied to an object owned by SYS.

Follow these guidelines:

- Do not create Data Redaction policies on the default Oracle Database schemas, including the SYS and SYSTEM schemas.
- Be aware that granting the EXEMPT REDACTION POLICY system privilege to additional roles may enable users to bypass Oracle Data Redaction, because the grantee role may have been granted to additional roles.
- Do not revoke the EXEMPT REDACTION POLICY system privilege from the roles that it was granted to by default.

18.4 Policy Expressions That Use SYS_CONTEXT Attributes

Be careful when writing a policy expression that depends on a SYS_CONTEXT attribute that is populated by an application.

If the user somehow connects directly (rather than through the application), then the SYS_CONTEXT attribute would not have been populated. If you do not handle this NULL scenario in your policy expression, you could unintentionally reveal actual data to the guerying user.

For example, suppose you wanted to create a policy expression that intends to redact the query results for everyone except users who have the client identifier value of <code>SUPERVISOR</code>. The following expression unintentionally enables querying users who have <code>NULL</code> as the value for their <code>CLIENT IDENTIFIER</code> to see the real data:

```
SYS CONTEXT ('USERENV', 'CLIENT IDENTIFIER') IS NOT 'SUPERVISOR'
```

A more rigorous policy expression redacts the result of the query if the client identifier is not set, that is, it has a NULL value.

```
SYS CONTEXT('USERENV', 'CLIENT IDENTIFIER') IS NOT 'SUPERVISOR' OR IS NULL
```

Remember that in SQL, comparisons with NULL are undefined, and are thus FALSE, but redaction only takes place when the policy expression evaluates to TRUE.

18.5 Oracle Data Redaction Policies on Materialized Views

You can create Oracle Data Redaction policies on materialized views and on their base tables.

However, ensure that the creator of the materialized view, or the user who performs the refresh of the materialized view, is not blocked by any Data Redaction policies. In other words, the user performing the materialized view creation or refresh operations should be exempt from the Data Redaction policy. As a best practice, when you create a new materalized view, treat it as a copy of the actual table, and then create a separate Data Redaction policy to protect it.

18.6 REDACTION_COLUMNS Data Dictionary View Behavior When a View Is Invalid

When an Oracle Data Redaction policy exists on a column of a view, and the view becomes invalid, the Data Redaction policy remains visible in the REDACTION_COLUMNS data dictionary view.

For example, a view can become invalid if one of its columns refers to a column that was dropped from a table upon which the view depends.

The column continues to be visible in the REDACTION_COLUMNS data dictionary view because the Data Redaction policy is not automatically dropped when the view becomes invalid.

Instead, the decision on whether to drop the Data Redaction policy is taken when the view is subsequently altered.

This approach was chosen in preference to automatically dropping the Data Redaction policy when the view becomes invalid because it is less error-prone and presents less risk of accidentally displaying actual data from the underlying table.

By deferring the decision to when the view is being altered, it allows the view to be recompiled after the column is restored to the table. After the column is restored to the table and the view is recompiled, then the view becomes valid and still has its Data Redaction policy in place.

On the other hand, if the invalid view definition was subsequently replaced with a valid view definition which no longer contains the column that the Data Redaction policy was previously defined on, it is at that point that the Data Redaction policy is automatically dropped. The REDACTION_COLUMNS data dictionary view is then updated to no longer show the column (since it is no longer part of the new view's definition).

18.7 Dropped Oracle Data Redaction Policies When the Recycle Bin Is Enabled

You should check if the recycle bin is enabled before you drop Oracle Data Redaction policies.

If you drop a table or view that has an Oracle Data Redaction policy defined on it when the recycle bin feature is enabled, and if you query the REDACTION_COLUMNS or REDACTION_POLICIES data dictionary views before you purge the recycle bin, then you will see object names such as BIN\$... (for example, BIN\$1Xu5PSW5VaPqQxGS5AoAEA==\$0).

This is normal behavior. These policies are removed when you purge the recycle bin.

To find if the recycle bin is enabled, you can run the SHOW PARAMETER RECYCLEBIN command in SQL*Plus.

Related Topics

Purging Objects in the Recycle Bin

Glossary

actual data

In Oracle Data Redaction, the data in a protected table or view. An example of actual data could be the number 123456789, and the redacted data version of this number could be 999996789.

auto-login TDE wallet

A software keystore that is protected by a system-generated password and does not need to be explicitly opened by a security administrator. Auto-login TDE wallets are automatically opened when accessed and can be used on any computer that runs an Oracle database. For example, consider an Oracle RAC environment that has four nodes, and each node is on a different computer. This environment uses an auto-login keystore. When a REKEY operation is performed on node 1, the auto-login and password-based keystores must be copied to the computers that host nodes 2, 3, and 4. In this configuration, the auto-login keystores will be opened on all four nodes when required.

cipher suite

A set of authentication, encryption, and data integrity algorithms used to exchange messages between network nodes using Transport Layer Security (TLS). During a TLS handshake, for example, the two nodes negotiate to see which cipher suite they will use when transmitting messages back and forth.

ciphertext

Message text that has been encrypted.

See also encrypted text.

data redaction

The ability to mask data with different values in real time, that is, at the moment a user tries to access the data. You can mask all of the data, a partial subset of the data, or display random values in place of the data. It does not change the actual data in the database.

decryption

The process of converting an encrypted message (the ciphertext), back to its original message (plaintext).

encrypted text

Text that has been encrypted, using an encryption algorithm and an encryption key; the output stream of an encryption process. The text is not readable or decipherable, without decrypting it first. Also called ciphertext.

encryption

The process of converting an original message (plaintext) to an encrypted message (ciphertext).

external keystore

A container that stores a Transparent Data Encryption key for a hardware security module. (The previous term for external keystore was hardware keystore.) An external keystore can be Oracle Key Vault or Oracle Cloud Infrastructure (OCI) Key Management Service (KMS). External keystores provide centralized key management for TDE-enabled databases.

hardware security module

A physical device that provides secure storage for encryption keys. Oracle does not support third-party hardware security modules to provide key management for Transparent Data Encryption-enabled databases. (See My Oracle Support note 2310066.1 for more information.) Oracle Key Vault can provide third-party hardware security modules to provide root-of-trust to Oracle Key Vault. See *Oracle Key Vault Root of Trust HSM Configuration Guide*.

inference

A process that is designed to find actual data by repeatedly trying queries. For example, to find the users who earn the highest salaries where the column salary is a redacted column, an intruder could use the following query:

SELECT FIRST_NAME, LAST_NAME, SALARY FROM HR.EMPLOYEES WHERE SALARY > 16000 ORDER BY SALARY DESC;

FIRST_NAME	LAST_NAME	SALARY
Steven	King	0
Neena	Kochhar	0
Lex	De Haan	0

key pair

A public key and its associated private key. See public and private key pair.

keystore

A general term for any container that stores encryption keys, such as Transparent Data Encryption keys and other encrypted data. It can refer to a TDE wallet, which is specific to Oracle Database, or to an external keystore, which is specific to Oracle Key Vault or Oracle Cloud Interface (OCI) Key Management Service (KMS).

local auto-login TDE wallet

A TDE wallet that is local and restricted to the computer on which it was created.

See also auto-login TDE wallet.

mask

The ability to redact data from a user or an application.

Oracle-managed tablespace

An Oracle-supplied tablespace that contains information necessary for the correct functioning (confidentiality, integrity, and availability) of the database system. This information includes the system's data dictionary, the system's temporary sort area, the system's undo segment, and the system's auxiliary data. This information is only expected to be updated internally by the Oracle database server itself, and does not normally be updated directly by users.

password-based TDE wallet

A TDE wallet that must be opened with a password before it can be accessed.

plaintext

Message text that has not been encrypted.

private key

In public-key cryptography, this key is the private key that is known only to its owner. It is primarily used for encrypting message digests used with digital signatures.

See public and private key pair.

public key

One of two keys that are used in public key cryptography, the other key being the private key. In typical public key cryptography usage, the public key is used to encrypt data or verify digital signatures. The the private key is used to decrypt data or generate digital signatures.

The public key, unlike the private key, can be made available to anyone whereas the private key must remain secret.

See public and private key pair.

public key encryption

The process where the sender of a message encrypts the encryption key of the recipient. Upon delivery, the message is decrypted by the recipient using its private key.

public and private key pair

A set of two related numbers used for encryption and decryption, where one is called the private key and the other is called the public key. Public keys are typically made widely available, while private keys are held by their respective owners. Data encrypted with either a public key or a private key from a key pair can be decrypted with its associated key from the key pair.

public key infrastructure (PKI)

Information security technology utilizing the principles of public key cryptography. Public key cryptography involves encrypting and decrypting information using a shared public and private key pair. Provides for secure, private communications within a public network.

redacted data

Masked data that is displayed to the querying user. For example, if the actual data is 3714-4963-5398-4321, then the redacted data could appear, depending on the Data Redaction policy, as XXXX-XXXX-XXXX-4321.

salt

In cryptography, a way to strengthen the security of encrypted data. Salt is a random string that is added to the data before it is encrypted, making it more difficult for attackers to steal the data by matching patterns of ciphertext to known ciphertext samples. Salt is often also added to passwords, before the passwords are hashed, to avoid dictionary attacks, a method that attackers use to determine sensitive passwords. The addition of salt to a password before hashing makes it more difficult for intruders to match the hash values (sometimes called verifiers) with their dictionary list of common password hash values, because they do not know the salt beforehand.

software keystore

See TDE wallet,

tablespace encryption key

An encryption key for the encryption of a tablespace. The TDE tablespace encryption key encrypts the tablespace encryption key, which in turn encrypts and decrypts data in the tablespace.

TDE master encryption key

A key that is stored within a TDE wallet or a external keystore. For table encryption, this key encrypts the TDE table key, and for tablespace encryption, it encrypts the tablespace encryption key.

See also keystore.

TDE table key

An encryption key that is associated with a table whose columns are marked for encryption. The TDE master encryption key encrypts this table encryption key.

TDE wallet

A container that stores a Transparent Data Encryption a TDE master encryption key for use as an auto-login TDE wallet, a local auto-login TDE wallet, or a password-based TDE wallet to store and manage security credentials for an individual entity. TDE wallets are specific to Oracle Database only. A Wallet Resource Locator (WRL) provides all of the necessary information to locate the TDE wallet. TDE wallets were previously referred to as software keystores.

wallet obfuscation

The ability to store and access an Oracle TDE wallet without querying the user for a password before access (supports single sign-on (SSO)).

Wallet Resource Locator (WRL)

A tool that provides all of the necessary information to locate a TDE wallet. It is a path to an operating system directory that contains a TDE wallet.

Index

Symbols	CDBs (continued)
	cloning PDBs with encrypted data in isolated
, when to use, 7-6	mode, 9-37
	cloning PDBs wth encrypted data, about,
A	8-25
askual data 14.0	Data Redaction masking policies, 13-4 moving PDB from one CDB to another in
actual data, 14-3	united mode, 8-20
ad hoc tools	moving PDB from one PDB to another, 9-34
Oracle Data Redaction, 13-4	PDBs with encrypted data, 8-21
ADMINISTER KEY MANAGEMENT	preserving keystore passwords in PDB move
isolated mode operations, 4-2	operations, 9-34
isolated mode operations not allowed, 4-7	preserving keystore passwords in PDB move
united mode operations allowed in, 3-2	operations in united mode, 8-20
united mode operations not allowed, <i>3-18</i>	relocating PDBs with encrypted data across
administrative access to policies, restricting, 18-2	CDBs in united mode, 8-27
aggregate functions	remotely cloning PDBs with encrypted data in
affect on Data Redaction policy optimization, 17-6	isolated mode, 9-38, 9-39
ALTER SYSTEM statement	remotely cloning PDBs with encrypted data in
how compares with ADMINISTER KEY	united mode, 8-26
MANAGEMENT statement, 10-7	change data capture, synchronous, 5-3
APEX_UTIL.GET_NUMERIC_SESSION_STATE	closing external keystores, 8-6
function	closing TDE wallets, 8-6
Oracle Data Redaction policies (NV public	column encryption
function), 15-13	about, 2-7
APEX_UTIL.GET_SESSION_STATE function	changing algorithm, 5-10
Oracle Data Redaction policies (V public	changing encryption key, 5-10
function), 15-13	creating encrypted table column with default
applications	algorithm, 5-4
modifying to use Transparent Data	creating encrypted table column with non-
Encryption, 10-7	default algorithm, 5-5
auto login keystores	creating index on encrypted column, 5-9
and Transparent Data Encryption (TDE),	data loads from external file, 10-10
7-34	data types to encrypt, 5-2
Automatic Storage Management (ASM)	existing tables
moving TDE wallets from, 7-14	about, 5-8
non-OMF-compliant system pointing to ASM	adding encrypted column to, 5-8
location, 7-22	disabling encryption, 5-9
TDE wallet location configuration, 7-21	encrypting unencrypted column, 5-8
TDE wallet pointing to ASM location, 7-22	external tables, 5-7
	incompatibilities, 12-1
C	limitations, 12-1
	migrating encryption key, 5-10
CDBs	performance, optimum, 12-4
cloning PDBs with encrypted data, 8-25	salt, 5-9

column encryption (continued)	ENCRYPT_NEW_TABLESPACES database
security considerations, 10-4	initialization parameter, 6-12
skipping integrity check, 5-6	encrypted columns
column sensitive type discovery	data loads from external files, 10-10
enabling when creating a Data Redaction	encrypting data
policy, <i>16-11</i>	in isolated mode, 4-15, 4-18
compliance	in united mode, 3-17
Transparent Data Encryption, 2-3	encryption, 2-7
compression of Transparent Data Encryption	algorithm, setting default, 6-10
data, <i>10-3</i>	cloning PDBs with encrypted data, 8-25
configuring TDE wallets	cloning PDBs with encrypted data in isolated
creating local auto-login TDe wallet, 3-12	mode, 9-37
control files	databases offline, 6-31
lost, 4-7	databases online, 6-33
	encrypting future tablespaces, 6-12
D	about, <i>6-11</i>
	existing databases, 6-30
data at rest, 2-1	procedure, 6-12
data deduplication of Transparent Data	relocating PDBs with encrypted data across
Encryption data, 10-3	CDBs in united mode, 8-27
data redaction	remotely cloning PDBs with encrypted data in
See Oracle Data Redaction	isolated mode, 9-38, 9-39
Data Redaction supported functions, 15-8	remotely cloning PDBs with encrypted data in
data storage	united mode, 8-26
Transparent Data Encryption, 10-6	supported encryption algorithms, 6-18
database close operations	tablespaces, offline, 6-14
keystores, 10-11	tablespaces, online, 6-18
database links	See also Transparent Data Encryption (TDE)
with Oracle Data Redaction policies, 17-6	encryption algorithms, supported, 6-18
database roles	encryption keys
Data Redaction policies, 15-12	setting in isolated mode, 4-14
databases	setting in united mode, 3-16
about encrypting, 6-2	ENCRYPTION_WALLET_LOCATION parameter
creating encrypted with DBCA for Data	convert to WALLET_ROOT and
Guard, 6-28	TDE_CONFIGURATION, 7-41
creating encrypted with DBCA for	Errors:
multitenant, 6-27	ORA-46694, <i>9-30</i>
encrypting existing, 6-30	EXEMPT REDACTION POLICY privilege
encrypting offline, 6-31	using with Database Vault, 18-2
encrypting online, 6-33	expressions, 15-8
DDL statements	LENGTH functions, character string, 15-10
Oracle Data Redaction policies, 17-4	namespace functions, 15-9
decryption	Oracle Application Express, 15-10
tablespaces, offline, 6-14, 6-17	Oracle Label Security functions, 15-11
tablespaces, online, 6-18	SUBSTR function, 15-9
DISTINCT clause, Data Redaction policies, 17-2	external credential store, external keystores, 7-6
DML statements	external credential store, external keystores,
Oracle Data Redaction policies, 17-4	sqlnet.ora, 7-6
Static Bata Nedadion policies, 27 4	external credential store, password-based TDE
_	wallets, 7-6
E	external credential store, password-based TDE
aditing custom formats, 16.7	wallets, sqlnet.ora, 7-6
editing custom formats, 16-7	external files
editing policies, 16-14	loading data to tables with encrypted
Editions Transparent Data Engraption, 11, 42	columns, <u>10-10</u>
Transparent Data Encryption, 11-42	,

external keystores	
about, 2 -9	
backing up, 7-9	import/export utilities, original, 5-3
changing password in isolated mode, 9-4	index range scans, 2-5
changing password in united mode, 8-3	indexes
closing, 8-6	creating on encrypted column, 5-9
closing in isolated mode, 9-9	inference, used to find data by repeatedly using a
closing in united mode, 8-7	query, <i>18-1</i>
heartbeat batch size, 3-23	inline views
opening in isolated mode, 4-16	Data Redaction policies order of redaction,
plugging PDBs, <i>8-24</i> , 9-36	17-5
unplugging PDBs, 8-23, 9-36	Data Redaction redaction, 17-5
using external keystore, 7-6	intruders
using external keystore, sqlnet.ora, 7-6	ad hoc query attacks, 18-1
external store for passwords	isolated mode, 4-2, 4-7
open and close operations in CDB, 8-28,	about, 4-1
9-40	about configuring wallet location and
external tables, encrypting columns in	keystore type, 4-7
	ADMINISTER KEY MANAGEMENT
ORACLE_DATPUMP, 10-10	
ORACLE_LOADER, 10-10	operations allowed in, 4-2
EXTERNAL_STORE clause, 7-6	ADMINISTER KEY MANAGEMENT
	operations not allowed in, 4-7
G	backing up TDE wallets, 9-4
	changing PDB keystore from CDB root, 4-9
GROUP BY clause, Data Redaction policies,	configuring external keystores, about, 4-15
17-2	configuring for Oracle Key Vault, 4-16
guidelines	configuring keystore location and keystore
materialized views and Data Redaction, 18-3	type, 4-8
recycle bin and Data Redaction, 18-4	configuring TDE wallets, about, 4-12
SYS_CONTEXT values and Data Redaction,	creating TDE master encryption key for later
18-3	use, <u>9-11</u>
guidelines, general usage	creating TDE wallet, 4-12
redacted columns and DISTINCT clause,	encrypting data, <i>4-15</i> , <i>4-18</i>
17-2	encryption key, setting, 4-14
redacted columns and GROUP BY clause,	exporting or importing master encryption
17-2	keys, 9-43
redacted columns and ORDER BY clause,	exporting, importing TDE master encryption
,	keys, 9-42
17-2	external keystores, closing, 9-9
guidelines, security	external keystores, opening, 4-16
ad hoc query attacks and Data Redaction,	lost control file, 4-10
18-1	master encryption keys
application context value handling by Data	
Redaction policies, 18-1	moving key from PDB to CDB root, 9-30
day-to-day operations and Data Redaction,	master encryption keys, migrating, 4-18
18-1	migrating from external keystore to password
DDL statements and Data Redaction	TDE wallet, 9-29
policies, 18-1	migrating from password TDE wallet to
exhaustive SQL queries and inference and	external keystore, 9-28
Data Redaction, 18-1	moving encryption key into new TDE wallet,
	9-14
Н	moving PDB from one CDB to another, 9-34
11	Oracle RAC, 4-11
HEARTBEAT_BATCH_SIZE initialization	password change for external keystores, 9-4
parameter, 3-23	password change for TDE wallets, 9-3

isolated mode (continued)	keystores (continued)
plugging PDB with master encryption keys	external, changing password in united mode,
stored in external keystore, 9-36	8-3
plugging PDBs with encrypted data into CDB,	external, opening in isolated mode, 4-16
9-35	merging
secrets in a keystore, Oracle Database, 9-18	one into another existing keystore in
secrets stored in external keystores, 9-21	isolated mode, 9-6
secrets stored in TDE wallets, 9-19	one into another existing TDE wallet,
setting new encryption key, 4-17	7-11
TDE wallets, closing, 9-8	migrating
TDE wallets, opening, 4-13	creating master encryption key for
uniting PDB keystore, 9-30 unplugging PDBs, 9-36	external keystore-based encryption, 7-16
unplugging PDBS, 9-30	external keystore to TDE wallet, 7-17
_	keystore order after migration, 7-19
J	migration using Oracle Key Vault, 7-20
ICON	moving out of ASM, 7-14
JSON Oracle Pata Reduction, 17,13	multiple databases sharing same host,
Oracle Data Redaction, 17-12	setting for, 3-9
	non-OMF-compliant system pointing to ASM
K	location, 7-22
keystore location	opening in CDBs, 8-28, 9-40
about setting for isolated mode, 4-7	Oracle Database secrets
setting for isolated mode, 4-8	about, <i>9-18</i>
setting for united mode, 3-7	password access, 7-2
keystore type	password preservation in PDB move
about setting for isolated mode, 4-7	operations, 9-34
setting for isolated mode, 4-8	password preservation in PDB move
setting for united mode, 3-7	operations in united mode, 8-20
keystores	reverting keystore creation operation, 9-33
about, 2-8	search order for, 2-12
architecture, 2-7	software, changing password in isolated
auto login, 7-34	mode, 9-3
auto-login, open and close operations in	software, changing password in united mode,
CDBs, <i>8-28</i> , <i>9-40</i>	8-2
backing up isolated mode password-	TDE master encryption key merge differing
protected TDE wallets	from import or export, 7-40
procedure, 9-4	using auto-login external keystore, 7-3
backing up password-protected TDE wallets	
backup identifier rules, 7-7	L
procedure, 7-8	LENGTH functions, character string
backing up united mode password-protected	expressions, 15-10
TDE wallets	expressions, 15-10
procedure, 8-4	
changing Oracle Key Vault password, 7-5	M
closing external keystores, 8-6 closing in CDBs, 8-28, 9-40	masking
closing TDE wallets, 8-6	See Oracle Data Redaction
creating when PDB is closed, 9-31	materialized views
database close operations, 10-11	Data Redaction guideline, 18-3
deleting unused, 8-17	Transparent Data Encryption tablespace
deleting unused, about, 8-16	encryption, 11-5
external, changing password in isolated	migration
mode, 9-4	migrating from external keystore to password
•	TDE wallets, 9-29

migration (continued) migrating from password TDE wallet to external keystore, 9-28 moving encryption key into new keystore about, 8-16	Oracle Data Pump (continued) encrypted data with database links, 11-4 encrypted data with dump sets, 11-3 exported data from Data Redaction policies, 17-11 exporting Oracle Data Redaction objects, 17-9
N	imported data from Data Redaction policies,
namespace functions	17-11
expressions, 15-9	Oracle Data Redaction security policy, 17-8
nested functions	Oracle Data Redaction, 13-1, 14-5
Data Redaction policies order of redaction,	about, <i>13-1</i>
17-5	actual data, 14-3
NV public function	ad hoc tools, 13-4
(APEX_UTIL.GET_NUMERIC_SESSION	aggregate functions, 17-6
_STATE function), Data Redaction	benefits, 13-2
policies, <i>15-13</i>	CDBs, 13-4
	columns with XML-generated data, 17-6
0	creating custom format, 16-5
	DBMS_REDACT.ADD_POLICY procedure
OLS_LABEL_DOMINATES public function	using, 15-4 DBMS_REDACT.ALTER_POLICY procedure
Data Redaction policies, 15-13	about, 15-52
opening connection to Oracle Key Vault, 3-20	example, <i>15-54</i>
opening TDE wallets, 3-13	parameters required for various actions, 15-53
operations allowed in, 3-2, 4-2	syntax, 15-52
operations not allowed in, 3-18, 4-7	DBMS_REDACT.DISABLE_POLICY
ORA-00979 error	about, 15-59
not a GROUP BY expression error, 17-2	example, 15-59
ORA-28081	syntax, 15-59
Insufficient privileges - the command	DBMS_REDACT.DROP_POLICY
references a redacted object error, 17-4	about, <i>15-60</i>
ORA-28365 error	examples, <i>15-60</i>
wallet is not open, 6-4	syntax, <i>15-60</i>
ORA-46680 error, <i>8-21</i>	DBMS_REDACT.ENABLE_POLICY
ORA-46694 error, <i>9-30</i>	about, 15-59
ORA-65040 error, 9-31	example, <i>15-59</i>
Oracle Application Express	syntax, <i>15-59</i>
filtering using by session state in Data	DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES
Redaction policies, 15-13	procedure
Oracle Application Expression	about, 15-27
expressions, 15-10	syntax, 15-28
Oracle Call Interface	using, 15-28
Transparent Data Encryption, 11-42	deleting policies, 16-17
Oracle Data Guard	editing custom format, 16-7
isolated keystore on PDB, 11-32	editions, 17-7
Rekey operations in TDE, 11-33	Enterprise Manager Cloud Control, 16-5, 16-7, 16-10
TDE and Oracle Key Vault, 11-12	Enterprise Manager Cloud Control workflow, 16-2
TDE master encryption keys, removing from	Enterprise Manager Cloud Control, about, 16-1
standby database, 8-19	exporting data using Data Pump Export, 17-11 exporting objects using Data Pump, 17-9
Transparent Data Encryption, 11-5	full data redaction
wallet-based TDE configuration, 11-20, 11-26	about, 14-2
Oracle Data Pump	creating policy for, 15-25
encrypted columns, 11-2	examples, 15-26
encrypted data, 11-2	CAUTIPICS, 10 20

Oracle Data Redaction (continued)	Oracle Data Redaction (continued)
full data redaction (continued)	regular expression data redaction
modifying default value, 15-27	creating policies for, 15-40
syntax, 15-25	custom, creating policies for, 15-47
functions used in expressions, 15-8	example, 15-46
getting started using, 14-1	example of custom, 15-47
how differs from Oracle Database Real Application	formats, 15-43
Security masking, 17-8	formats, creating policies for, 15-43
how differs from Oracle Virtual Private Database	settings for, 15-47
masking, 17-7	syntax, 15-41
importing data using Data Pump Import, 17-11	regular expression redaction
inline views order of redaction, 17-5	about, <i>14-4</i>
JSON, 17-12	returning null values
managing policies, 16-10	about, 15-29
named policy expressions	example, 15-30
about, 14-10	syntax, 15-29
	SYS schema objects, 18-2
nested functions order of redaction, 17-5 no data redaction	-
	SYSTEM schema objects, 18-2
about, <i>14-10</i> , <i>15-50</i>	use cases, 13-3
creating policies for, 15-50	when to use, 13-2
example, 15-50	WHERE clause redaction, 17-5
syntax, 15-50	Oracle Data Redaction formats
Oracle Data Pump security policy, 17-8	creating in Cloud Control, 16-5
Oracle Data Warehouse query rewrites, 17-7	deleting in Cloud Control, 16-9
Oracle Enterprise Manager Data Masking and Subsettin	
Pack, <i>17-12</i>	Enterprise Management Cloud Control,
partial data redaction	managing in, 16-5
about, <i>14-3</i>	Enterprise Manager Cloud Control, sensitive
character types, policies for, 15-36	column types, 16-2
data-time data types, 15-39	Enterprise Manager Cloud Control, viewing
example using character data type, 15-37	in, <i>16-8</i>
example using data-time data type, 15-39	Oracle Data Redaction import operations
example using fixed character format, 15-35	inadvertently dropping policies, 17-11
example using number data type, 15-38	ORA-28069, <i>17-11</i>
formats, fixed character, 15-33	Oracle Data Redaction partial redaction
number data types, 15-37	creating policies for, 15-31
syntax, <i>15-32</i>	Oracle Data Redaction policies, 15-12
policy expressions	about, 15-2
about, <i>15-15</i>	altering, 15-52
creating, 15-16	building reports, 15-61
dropping, 15-18	creating
tutorial, <u>15-18</u>	examples, 15-26
updating, 15-17	general syntax, 15-5
prevention of data exposure by management tools, 13-3	
privileges for creating policies, 15-3	creating in Cloud Control, 16-11
queries on columns protected by Data Redaction policie	
17-5	disabling, 15-59
random data redaction	disabling in Cloud Control, 16-16
about, 15-48	dropping, 15-60
creating policies for, 15-48	editing in Cloud Control, 16-14
example, 15-49	enabling, 15-59
randomized data redaction	Enterprise Manager Cloud Control, viewing
about, 14-5	in, 16-15
redaction of data in read-only static pages, 13-3	exempting users from, 15-51
redaction of data used in offline analytics 13-4	

Oracle Data Redaction policies (continued)	Oracle Label Security
expressions	functions using Data Redaction expressions,
by Application Express session state,	15-11
15-13	Oracle Real Application Clusters
by database role, 15-12	Oracle Key Vault and TDE in multitenant
by OLS label dominance, 15-13	configuration, 11-35
by user environment, 15-12	Transparent Data Encryption, 11-34
filtering users	Oracle Recovery Manager
about, <i>15-8</i>	Transparent Data Encryption, 7-25
no filtering, 15-14	Oracle Securefiles
finding information about, 15-63	Transparent Data Encryption, 11-41
Oracle Enterprise Manager Cloud Control,	Oracle Virtual Private Database (VPD)
16-17	Data Redaction, 17-7
redacting multiple columns in one policy,	Oracle-managed tablespaces, 6-2
15-57	orapki utility
trace files, 15-62	how compares with ADMINISTER KEY
Oracle Data Redaction policy expressions	MANAGEMENT statement, 10-7
Cloud Control, about, 16-18	ORDER BY clause, Data Redaction policies,
creating in Cloud Control, 16-18	17-2
deleting in Cloud Control, 16-21	original import/export utilities, 5-3
editing in Cloud Control, 16-19	
viewing in Cloud Control, 16-20	P
Oracle Data Redaction, database links, 17-6	<u></u>
Oracle Data RedactionEnterprise Manager Cloud	passwords
Control	access to for ADMINISTER KEY
deleting custom format, 16-9	MANAGEMENT operations, 7-2
Oracle Database Real Application Security	preserving in PDB move operations, 9-34
Data Redaction, 17-8	preserving in PDB move operations in united
Oracle Database Vault	mode, <i>8-20</i>
using with Data Redaction, 18-2	PDBs
Oracle Enterprise Manager Cloud Control, 16-14	Data Redaction policies, 13-4
creating custom formats, 16-5	finding TDE keystore status for all PDBs,
creating policy expressions, 16-18	8-29
deleting policy expressions, 16-21	master encryption keys
disabling policies, 16-16	exporting, 9-42
editing policy expressions, 16-19	importing, 9-42
Oracle Data Redaction, 16-5, 16-7, 16-16,	unplugging with encrypted data, 8-21
16-18–16-21	performance
Oracle Data Redaction formats, viewing in,	Transparent Data Encryption, 10-5
16-8	PKCS#11 library, switching over to updated
Oracle Data Redaction, creating policies,	library
16-11 Oracle Date Dedaction, viewing details of a	about, 7-23
Oracle Data Redaction, viewing details of a	procedure for, 7-24
policy, 16-15	policy expressions, Oracle Data Redaction,
policy expressions, about, 16-18	15-15
viewing policy expressions, 16-20 Oracle Enterprise Manager Data Masking and	
Oracle Enterprise Manager Data Masking and Subsetting Pack	R
Oracle Data Redaction impact, 17-12	recycle bin
Oracle GoldenGate	Data Redaction policies and, 18-4
storing secrets in Oracle keystores, 9-23	REDACTION_COLUMNS data dictionary view
Oracle Key Vault	invalid views, 18-4
migration of keystores, 7-20	rekey operations
Oracle Key Vault connection	Oracle Data Guard in TDE configuration,
opening in united mode, 3-21	11-33

rekeying	tablespace encryption (continued)
master encryption key, 7-34	storage overhead, 10-6
TDE master encryption key in isolated mode,	tablespace master encryption key
9-13	setting, 6-8
TDE master encryption key in united mode,	TABLESPACE_ENCRYPTION initialization
8-14	parameter, 11-8
reports	TABLESPACE_ENCRYPTION_DEFAULT_ALGO
based Data Redaction policies, 15-61	RITHM dynamic parameter, 6-10
returning null values	tablespaces
about, <i>14-5</i>	about encrypting, 6-2
	comparison between offline and online
S	conversions, 6-2
	Oracle managed, closed TDE keystore
salt	impact on encrypted, 6-4
removing, 5-10	rekeying encryption algorithm, 7-35
salt (TDE)	tablespaces
adding, 5-9	encrypting, 7-35
secrets	tablespaces, offline decryption
storing Oracle Database secrets in keystore	procedure, 6-17
about, 9-18	tablespaces, offline encryption
SecureFiles	about, 6-14
Transparent Data Encryption, 11-41	procedure, 6-16
sensitive credential data, 6-13	tablespaces, online encryption
SUBSTR function	about, <i>6-18</i>
expressions, 15-9	best practice, 6-29
synchronous change data capture, 5-3	decrypting, 6-24
SYS user	finishing interrupted job, 6-25
Data Redaction policies, 18-2	procedure, 6-20
SYS_CONTEXT function	procedure for Oracle Data Guard, 11-9
Data Redaction policies, 18-3	rekeying, 6-22
SYS_SESSION_ROLES namespace used in	rekeying SYSAUX, 6-23
Data Redaction, 15-12	rekeying UNDO, 6-23
SYS_SESSION_ROLES SYS_CONTEXT	TDE
namespace	See Transparent Data Encryption (TDE)
Data Redaction, 15-12	TDE column encryption
	restrictions, 5-3
SYSTEM user	TDE columns
Data Redaction policies, 18-2	migrating from release 11g, 10-1
	TDE master encryption key, 3-7
T	creating for later use in isolated mode, 9-11
	creating for later use in united mode, 8-8
tablespace encryption	TDE master encryption keys
about, 2-5	activating
architecture, 2-5	about, <i>8-10</i>
creating encrypted tablespaces, 6-9	example, <i>8-11</i>
examples, 6-9	activating in isolated mode, 9-12
incompatibilities, 12-1	activating in united mode, 8-10
migrating encryption key, 6-26	architecture, 2-7
opening keystore, 6-7	attributes, 7-29
performance overhead, 10-5	
performance, optimum, 12-4	creating for later use
procedure, 6-6	about, 8-8
restrictions, 6-5	custom attribute tags
security considerations for plaintext	about, 7-30
fragments, 10-5	creating, 7-31
setting tablespace key. 6-8	creating in isolated mode, 9-15

TDE master encryption keys (continued)	TDE wallets (continued)
custom attribute tags (continued)	opening, about, 3-13
creating in united mode, 8-15	Oracle ASM disk group, setting for, 3-9
disabling not allowed, 7-32	password-based using external keystore, 7-6
ENCRYPTION_WALLET_LOCATION to	password-based using external keystore,
WALLET_ROOT and	sqlnet.ora, 7-6
TDE_CONFIGURATION	pointing to ASM location, 7-22
creating, 7-41	software, opening in isolated mode, 4-13
exporting, 7-37	software, opening in united mode, 3-14
exporting in PDBs, 9-42	Transparent Data Encryption (TDE), 2-1, 2-7
finding currently used encryption key in	about, <i>2-1</i>
united mode, 8-15	about configuration, 2-2
finding currently used TDE master encryption	benefits, 2-3
key, 7-30	column encryption
importing, 7-39	about, 2-7, 5-1
importing in PDBs, 9-42	adding encrypting column to existing
keystore merge differing from import or	table, <u>5-8</u>
export, 7-40	changing algorithm, 5-10
outside the databaase	changing encryption key, 5-10
about, <i>8-12</i>	creating encrypted column in external
outside the database	table, 5-7
creating in isolated mode, 9-9	creating index on encrypted column, 5-9
creating in united mode, 8-12	creating tables with default encryption
rekeying, 7-34, 8-14, 9-13	algorithm, 5-4
removing automatically from standby	creating tables with non-default
database, 8-19	encryption algorithm, 5-5
resetting in keystore, 7-34	data types supported, 5-2
setting in keystore, 7-32	disabling encryption in existing column,
TDE tablespaces	5-9
migrating from release 11g, 10-1	encrypting columns in existing tables, 5-8
TDE wallets	encrypting existing column, 5-8
about, 2-9	encryption and integrity algorithms, 2-10
ASM-based, 7-21	migrating encryption key, 5-10
backing up password-protected TDE wallets	restrictions, 5-3
about, 7-7	salt in encrypted columns, 5-9
changing password in isolated mode, 9-3	columns with identity columns, 5-3
changing password in united mode, 8-2	compatibility with application software, 12-1
closing in isolated mode, 9-8	compatibility with Oracle Database tools,
closing in united mode, 8-6	12-1
creating in united mode, 3-11	compression of encrypted data, 10-3
deleting, 7-26	configuring external keystores
deleting unused in isolated mode, 9-14	reconfiguring TDE wallet, 3-26
merging	setting master encryption key, 3-22
about, 7-10	configuring external keystores in isolated
auto-login into password-protected, 7-12	mode
reversing merge operation, 7-13	reconfiguring TDE wallet, 4-18
two into a third new TDE wallet, 7-11	configuring keystores
two into a third new TDE wallet in	about, 3-7
isolated mode, 9-6	configuring Oracle Key Vault for united mode,
migrating	3-20
password key into external keystore,	configuring TDE wallets
7-16	creating auto-login TDE wallet, 3-12
moving TDE wallet to a new location, 7-13	data deduplication of encrypted data, 10-3
opening in isolated mode, 4-13	editions, 11-42
opening in united mode, 3-14	encryption and integrity algorithms, 2-10

Transparent Data Encryption (TDE) (continued)	Transparent Data Encryption (TDE) (continued)
finding information about, 7-42	Oracle Real Application Clusters (continued)
frequently asked questions, 12-1	Oracle Key Vault in multitenant
incompatibilities, 12-1	configuration, 11-35
keystore management	Oracle Recovery Manager, 7-25
changing Oracle Key Vault keystore	TDE wallets, 7-25
password, 7-5	PDBs
closing external keystores, 8-6	finding keystore status for all PDBs, 8-29
closing TDE wallet, 8-6	performance
merging keystores, one into an existing	database workloads, 12-4
in isolated mode, 9-6	decrypting entire data set, 12-4
merging TDE wallets, about, 7-10	optimum, <u>12-4</u>
merging TDE wallets, one into an	worst case scenario, 12-4
existing, 7-11	performance overheads
migrating password key and external	about, <i>10-5</i>
keystore, reverse migration, 7-17	typical, <u>12-4</u>
TDE master encryption key attributes,	privileges required, 2-4
7-29	SecureFiles, 11-41
keystore search order, 2-12	security considerations
keystores	column encryption, 10-4
about, 2-8	general advice, 10-4
benefits, 2-8	platintext fragments, 10-5
types, 2-9	storage overhead, 10-6
master encryption key	storing Oracle GoldenGate secrets, 9-23
rekeying, 7-34	tablespace encryption
rekeying in united mode, 8-14	about, <i>2-5</i> , <i>6-1</i>
master encryption key attributes	creating, 6-8
creating custom tags, 7-31	encryption and integrity algorithms, 2-10
master encryption keys	examples, 6-9
setting in keystore procedure, 7-32	migrating encryption key, 6-26
· · · · · · · · · · · · · · · · · · ·	
setting in keystore, about, 7-32 modifying applications for use with, 10-7	opening keystore, 6-7 restrictions, 6-5
multidatabase environments, 11-42	setting master encryption key, 6-8
multitenant environment, 2-11	tablespace encryption, setting with
non-OMF-compliant system pointing to ASM	COMPATIBLE parameter, 6-6
location, 7-22	TDE master encryption key
opening the connection to Oracle Key Vault,	rekeying in isolated mode, <i>9-13</i>
3-20	TDE master encryption key attributes
Oracle Call Interface, 11-42	about, 7-30
Oracle Data Guard, 11-12	creating custom tags in isolated mode,
Oracle Data Guard rekey operations, 11-33	9-15
Oracle Data Guard, isolated keystore on	creating custom tags in united mode,
PDB, <i>11-32</i>	8-15
Oracle Data Pump	TDE master encryption keys
export and import operations on dump	exporting and importing, 7-37
sets, 11-3	TDE Master Encryption Keys
export and import operations on	resetting in keystore, 7-34
encrypted columns, 11-2	TDE wallet management
export operations on database links, 11-4	ASM-based TDE wallet, 7-21
Oracle Data Pump export and import	backing up password-protected TDE
operations	wallets, 7-7
about, <i>11-2</i>	merging TDE wallets, auto-login into
Oracle Real Application Clusters	password-protected, 7-12
about, <i>11-34</i>	merging TDE wallets, reversing merge
	operation 7-13

configuring, procedure, 3-7
creating TDE master encryption key for later
use, <mark>8-8</mark>
creating TDE wallet, 4-12
encrypting data, 3-17
encryption key, setting, 3-16
external keystores, closing, 8-7
finding keystore status for all PDBs, 8-29
heartbeat batch size for external keystores,
3-23
isolating PDB keystore, 8-19
keystore open and close operations, 8-28
master encryption keys
moving key from CDB root to PDB, 8-19
moving TDE master encryption key into new
keystore, 8-17
Oracle Key Vault connection, opening, 3-21
password change for external keystores, 8-3
password change for TDE wallets, 8-2
relocating PDBs with encrypted data across
CDBs in united mode, 8-27
remotely cloning PDB with encrypted data,
8-26, 9-38
remotely cloning PDBs with encrypted data,
9-39
setting external keystore encryption key, 3-24
TDE wallets, closing, 8-6
TDE wallets, creating in, 3-11
TDE wallets, opening, 3-14
utilities, import/export, 5-3
\
V
V public function
V public function
(APEX_UTIL.GET_SESSION_STATE
function) Data Dadaation nations 45 10
function), Data Redaction policies, 15-13
V\$ENCRYPTION_WALLET view
V\$ENCRYPTION_WALLET view keystore order after migration, 7-19
V\$ENCRYPTION_WALLET view keystore order after migration, 7-19 views
V\$ENCRYPTION_WALLET view keystore order after migration, 7-19
V\$ENCRYPTION_WALLET view keystore order after migration, 7-19 views
V\$ENCRYPTION_WALLET view keystore order after migration, 7-19 views Data Redaction, 15-63
V\$ENCRYPTION_WALLET view keystore order after migration, 7-19 views
V\$ENCRYPTION_WALLET view keystore order after migration, 7-19 views Data Redaction, 15-63
V\$ENCRYPTION_WALLET view keystore order after migration, 7-19 views Data Redaction, 15-63
V\$ENCRYPTION_WALLET view keystore order after migration, 7-19 views Data Redaction, 15-63 W WALLET_ROOT parameter convert from
V\$ENCRYPTION_WALLET view keystore order after migration, 7-19 views Data Redaction, 15-63 W WALLET_ROOT parameter
V\$ENCRYPTION_WALLET view keystore order after migration, 7-19 views Data Redaction, 15-63 W WALLET_ROOT parameter convert from ENCRYPTION_WALLET_LOCATION
V\$ENCRYPTION_WALLET view keystore order after migration, 7-19 views Data Redaction, 15-63 W WALLET_ROOT parameter convert from ENCRYPTION_WALLET_LOCATION 7-41
V\$ENCRYPTION_WALLET view keystore order after migration, 7-19 views Data Redaction, 15-63 W WALLET_ROOT parameter convert from ENCRYPTION_WALLET_LOCATION
V\$ENCRYPTION_WALLET view keystore order after migration, 7-19 views Data Redaction, 15-63 W WALLET_ROOT parameter convert from ENCRYPTION_WALLET_LOCATION 7-41